

Cross-Application Plug-in
Development Resource Guide

Adobe Graphics and Publishing

Title Page

Version 1.2
24 October 1996

Adobe Graphic Application Products
Cross-Application Plug-in Development Resource Guide

Copyright © 1991–96 Adobe Systems Incorporated. All rights reserved.
Portions Copyright © 1990–91 Thomas Knoll.

The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated
assumes no responsibility or liability for any errors or inaccuracies that may
appear in this document. The software described in this document is
furnished under license and may only be used or copied in accordance with
the terms of such license.

Adobe, Adobe After Effects, Adobe PhotoDeluxe, Adobe Premiere, Adobe
Photoshop, Adobe Illustrator, Adobe PageMaker, Adobe Type Manager, ATM
and PostScript are trademarks of Adobe Systems Incorporated that may be
registered in certain jurisdictions. Macintosh and Apple are registered
trademarks, and Mac OS is a trademark of Apple Computer, Inc. Microsoft,
Windows and Windows95 are registered trademarks of Microsoft
Corporation. All other products or name brands are trademarks of their
respective holders.

Some of the material for this document was derived from earlier works by
Thomas Knoll, Mark Hamburg and Zalman Stern. Additional contributions
came from David Corboy, Kevin Johnston, Sean Parent and Seetha
Narayanan. Information regarding specific SDKs, APIs, and product interfaces
has been provided by Matt Foster, Brian Andrews, Paul Norton, and Paul
Ferguson. This document was then compiled and edited by Andrew Coven.

Version History

Date Author Status

6 February 1996 Andrew Coven First release

6 March 1996 Brian Andrews,
Andrew Coven

Version 1.1. Update for Adobe After Effects 3.0.

20 November 1996 Andrew Coven Version 1.2. Update for Adobe Photoshop 4.0.

Table of Contents

Cross-Application Plug-in Development Resource Guide

3

Table of Contents

Title Page . 1

Version History . 2

Table of Contents . 3

1. Introduction . 5

Audience . 5

How to use this guide. 5

Under construction . 5

About this guide . 6

2. Getting Started . 7

Plug–in modules and plug–in hosts . 7

Cross-development paradigm . 7

Version releases and compatibility issues 7

Cross-application plug-in development strategies 8

3. Adobe After Effects . 10

Adobe After Effects and Adobe Photoshop . 11

4. Adobe After Effects PiPLs 12

Property structures and property lists . 12

Creating PiPL resources. 12

Loading PiPL resources . 12

Plug–in property lists . 12

Plug–in properties. 13

Adobe After Effects properties in the Mac OS and Windows . 13

Adobe After Effects Basic data types. 14

General properties . 15

Code descriptor properties . 16

Filter–specific properties. 17

FilterCaseInfo . 18

ANIM-specific properties . 20

'aFLT' property and ANIM_FilterInfo . 20

'aPAR' property and ANIM_ParamAtom 21

Effect–specific properties . 24

PF_OutFlags . 24

Format–specific properties . 27

Input/output-specific properties . 29

AEImageFormatExtensionInfo . 29

Adobe After Effects PiPL syntax. 30

5. Adobe Illustrator . 37

Adobe Illustrator and Adobe Photoshop . 38

6. Adobe Illustrator PiPLs 39

Table of Contents

Cross-Application Plug-in Development Resource Guide

4

The Plug-in Propery List Resource . 39

Adobe Illustrator properties in the Mac OS and Windows . . . 40

Adobe Illustrator basic data types . 40

General properties . 41

Code Descriptor Properties. 42

Import and Export Properties. 43

Importing. 43

Exporting . 43

Dynamically Declared Properties . 45

Adobe Illustrator SDK information and samples 46

Working with PiPLs . 46

Sample PiPLs . 46

7. Adobe PageMaker . 47

Adobe PageMaker and Adobe Photoshop . 48

8. Adobe PhotoDeluxe . 49

Adobe PhotoDeluxe and Adobe Photoshop . 50

9. Adobe Photoshop . 51

Host emulators . 51

10. Adobe Photoshop PiMIs 52

11. Adobe Photoshop PiPLs. 54

Property structures and property lists . 54

Creating PiPL resources. 54

Loading PiPL resources . 55

Plug–in property lists . 55

Plug–in properties. 55

General properties . 57

EnableInfo . 58

Code descriptor properties . 60

Color Picker–specific properties . 62

Export–specific properties . 63

Filter–specific properties. 64

FilterCaseInfo . 64

Format–specific properties . 67

Scripting–specific properties . 69

Adobe Photoshop PiPL Syntax . 70

12. Adobe Premiere . 75

Adobe Premiere and Adobe Photoshop . 76

Index . 77

Cross-Application Plug-in Development Resource Guide

5

1

1. Introduction

Welcome to the Adobe Graphics Applications Plug-in Development Resource
Guide!

This document is a guide to developing

plug–in modules

 that operate in
multiple applications. This includes Adobe After Effects, Adobe Illustrator,
Adobe PageMaker, Adobe PhotoDeluxe, Adobe Photoshop, Adobe Premiere,
and any other Adobe or third-party software that uses similar API structures.

Audience

This guide is for C programmers who have written plug–ins for Adobe After
Effects, Illustrator, PageMaker, Premiere, and Photoshop on Macintosh and
Windows systems and wish to expand those plug-ins to operate in other
applications besides their initial target application. This is called

cross-
application plug-in development

. An example would be to expand a Photoshop
Filter plug-in to operate in Illustrator, and PageMaker.

This guide assumes you are proficient in the C programming language and
have worked in any or all of these development environments: Apple MPW;
Metrowerks CodeWarrior Mac; Microsoft Visual C++; Windows NT; Windows
95.

You should have a working knowledge of the different Adobe products, and
understand how plug–in modules work from a user’s viewpoint. This guide
assumes you understand terminology such as

paths

,

layers

 and

masks

. For more
information, consult the appropriate user’s guide for your target products.

This guide does not contain information on creating plug-in modules for a
specific application. Consult the individual

software development kits

 for step-
by-step instructions and example code.

How to use this guide

This documentation is made to provide specific information on
implementation and structuring issues for each major Adobe graphics
application.

The best way to use this guide is to turn to the chapter containing specific
information on the application that you wish to modify your plug–in to
operate with.

If you writing plug–ins is new for you, we recommend you begin with the
software development kit for the initial target application you wish to
program your plug-in for, such as the

Adobe Photoshop SDK.

Once you are familiar with plug-in terminology and the examples, consult
this guide for different techniques when making your plug-in cross-
application compatible.

Under construction

This is the first release of this guide, and it is a work in progress.
More detailed information about each product will be added as this
document matures. Please report any errors or omissions to the
Adobe Developers Association.

!!

1. Introduction

Cross-Application Plug-in Development Resource Guide

6

GAP SDK tech notes mailing list

The Adobe Developers Association maintains a page on Adobe’s world-wide-
web site (

http://www.adobe.com

) which includes the latest SDK public
releases and technical notes. You can also have the technical notes e-mailed
to you directly by joining the Graphics Application Products SDK tech notes
mailing list. The GAP SDK Tech Notes e-mail list is for Adobe After Effects,
Adobe Illustrator, Adobe PageMaker, Adobe Photoshop and Adobe
Premiere. Send an e-mail to

acoven@adobe.com

 with
“

SUBSCRIBE GAP–SDK–TECH–NOTES

” as the subject, and these fields in your
message body:

1. Your full name

2. Business name

3. Address

4. City

5. State

6. Country

7. Country code or Zip

8. Area code and phone number (business is fine)

9. ADA member number. “

N/A

” if not a member; “

Info

” if want info.
(The ADA application and information should be in the kit with this
document.)

10. Any other e-mail addresses you want CC:’ed.

About this guide

This programmer’s guide is designed for readability on screen as well as in
printed form. The page dimensions were chosen with this in mind. The
Frutiger and Minion font families are used throughout the manual.

To print this manual from within Adobe Acrobat Reader, select the “Shrink
to Fit” option in the Print dialog.

Cross-Application Plug-in Development Resource Guide

7

2

2. Getting Started

This chapter describes what plug–in modules are and provides information
common to all plug–in modules. It introduces development strategies for
creating plug-ins that are compatible with multiple applications.

Plug–in modules and plug–in hosts
Plug–in modules are software programs developed by Adobe Systems and
third–party vendors with Adobe Systems to extend an application. Plug–in
modules can be added or updated independently by end users to customize
Photoshop to their particular needs.

This guide also frequently refers to plug–in hosts. A plug–in host is responsible
for loading plug–in modules into memory and calling them. The purpose of
this guide is to assist in creating plug-in modules that operate under a
variety of plug-in hosts.

These Adobe applications function as plug-in hosts: Adobe After Effects,
Adobe Premiere, Adobe Illustrator, Adobe PageMaker, Adobe PhotoDeluxe,
and Adobe Photoshop. All these applications support their own forms and
types of plug-ins, which are detailed in their individual SDKs.

Most of these applications support some, but not all, Photoshop plug–in
modules. Many applications from third–party developers support the use of
Photoshop plug–in modules, as well.

Most plug–in hosts are application programs, but this not a requirement. A
plug–in host may itself be a plug–in module. A good example of this is the
“Photoshop Adapter” which allows Adobe Illustrator 6.0 to host Photoshop
Format and Filter modules.

This guide is not designed for developers interested in creating plug–in
hosts; the emphasis and goal for this guide is presenting information
pertinent to creating plug–in modules.

Each plug-in host’s version will be listed when that particular application is
discussed.

Cross-development paradigm
Many developers have created plug-ins in their target application and want
to expand their plug-in’s functionality to other applications. If you are going
to take the time to make your plug-in compatible with one application, why
not make it compatible with all of Adobe’s graphic application products?
Adobe strongly encourages you to take the time to view all the details of
this document, not just one section regarding one application.

An additional investment of 10-20% of your development time can result in
a plug-in that operates in not just one application, but six (not counting
third-party host applications.) We believe this is a lucritive return on your
R&D investment.

Version releases and compatibility issues
Designing your plug-in for multiple applications also makes it necessary to
take into account different compatibility issues. Different hosts emulate

2. Getting Started

Cross-Application Plug-in Development Resource Guide 8

other hosts at different version levels. For instance, Adobe Premiere
emulates Adobe Photoshop filter plug-ins as Photoshop version 2.5, while
Adobe Illustrator emulates Adobe Photoshop filter plug-ins as Photoshop
version 3.0.4.

Backward-compatibility means designing your plug-in to be accessible (and
not just report an error message and quit) in earlier versions of applications.
Table lists the current versions of each piece of software and what version
we recommend you target for backward-compatibility programming.

Forward-compatibility can be realized by programming your plug-ins with
strict adherence to host signatures and suite version numbers. While it does
require more programming when suites are not available, by religiously
checking for host signatures and suite version numbers you can do a number
of things by simply adding to your plug-in programming, as opposed to re-
writing for every new version of a host that is released. Programming for
backward- and forward-compatibility allows you to:

1. Take advantage of application-specific features

2. Program for backward- and forward- compatibility

3. Optimize for and use new suites as they become available.

Cross-application plug-in development strategies
We recommend you follow this process for your cross-application plug-in
development:

1. Assess and determine the problem your plug-in will solve.

2. Acquire the primary SDK for your base development.

3. Examine the examples and read the primary SDK.

4. Determine your development strategy for your base application.

5. Read the information in this guide with the needs of your plug-in in
mind.

6. Reassess your development strategy for your base application.

7. Determine any host-requirements for the other target applications.

8. Program and create your plug-in.

9. Test under your base application.

10. Program and optimize based on testing results.

11. Test under the other target applications.

Table 2-1: Version releases and compatibility chart

Application Mac OS
version

Mac OS
release

Windows
version

Windows
release

Backward
Mac, Win

Adobe After Effects 3.0 12/20/95 None N/A 3.0, N/A

Adobe Illustrator 6.0 2/6/96 4.1 6/5/95 5.5, 4.1

Adobe PageMaker 6.0 6/1/95 6.0 8/1/95 5.0, 5.0

Adobe PhotoDeluxe 1.0 1/1/96 None N/A 3.0, N/A

Adobe Photoshop 4.0 11/18/96 4.0 11/18/96 2.5, 2.5

Adobe Premiere 4.2 8/1/95 4.0 5/1/95 4.0, 4.0

2. Getting Started

Cross-Application Plug-in Development Resource Guide 9

12. Modify and optimize based on those results.

13. Implement whatever beta-testing program you have.

14. Reassess and modify as needed.

15. Package and release your product.

Cross-Application Plug-in Development Resource Guide 10

33. Adobe After Effects

This chapter describes properties and useful resources of Adobe After Effects
for creating plug-ins that work under multiple applications.

Table 3-1: Adobe After Effects version and signature information

Description Value

Mac OS version 3.0

Mac OS release date 12/20/95

Windows version None

Windows release date N/A

Backward-compatibility targets Mac, Win 3.0, N/A

Signature 'FXTC'

3. Adobe After Effects

Cross-Application Plug-in Development Resource Guide 11

Adobe After Effects and Adobe Photoshop

Host version support
Adobe After Effects emulates the Photoshop 3.0 Plug-in API. All of the 3.0
API calls and functions are implemented, except:

1. Any callbacks related to Acquire or Export modules.

2. Any 3.0.4 callback services or suites.

Note: Because hosts like Adobe After Effects implement a version of
the Photoshop plug-in API that is earlier then the current version, it is
very important you check for validity and existence of suite versions
and their callbacks before you use them.

Creating dynamic resources
After Effects allows Photoshop plug-ins to be controlled over time. This is
achieved through the addition of a simple resource called an 'ANIM'. ANIM
properties are detailed in the next chapter.

Table 3-2: Adobe After Effects emulating Adobe Photoshop host

Description Value

Signature '8BIM'

Host version support 3.0, 3.0

Required adaptor N/A

Resource 'PiPL'

Supported module types Filter, Format, Parser

Plug-in folder default Adobe After Effects/Plug-ins/standard/
Photoshop Filters

Plug-in aliases Automatically resolved by After Effects.

Plug-in load order Loads references, but not code until execution
request. Press control-clear to clear out the plug-in
code cache, forcing the code to be reloaded.

How to access the different plug-ins while using Adobe After Effects:

Filter modules Effects»(sub-menu)

“PS plugInName”=Normal filter

“PS + plugInName”=Filter with 'ANIM' resource

Format modules File»Import»“Footage”»“File type:”

Parser modules Load at startup.

!!

Cross-Application Plug-in Development Resource Guide 12

44. Adobe After Effects PiPLs

A Plug–In Property List, called a 'PiPL' (pronounced “pipple”) is a flexible,
extensible data structure for representing a plug–in module’s metadata.

PiPLs contain all the information Adobe After Effects needs to identify and
load plug–in modules, as well as flags and other static properties that
control the operation of each plug–in. Your plug–in module should contain
one or more 'PiPL' structures.

Property structures and property lists
Plug–in property structures (or properties) are the basic units of information
stored in a property list. Properties are variable length data structures, which
are uniquely identified by a vendor code, property key, and ID number.
The valid properties and formal grammar are documented later in this
chapter.

Creating PiPL resources
Under the Mac OS, PiPLs are stored as Macintosh resources. Under Windows,
PiPLs are stored as Windows resources.

On the Macintosh, you can create and edit PiPL resources with a text editor
and the Rez compiler, or you can use a graphical resource editor like
Resorcerer. ResEdit cannot edit PiPL resources. If you are unfamiliar with the
format of Rez source code, refer to the appropriate Apple documentation.

Loading PiPL resources
When Photoshop launches, it scans all plug–in files for 'PiPL' resources.
Historically, each type of plug–in had its own file type.

File types are only a matter of convention for 'PiPL' based plug–in modules.
All known plug-in file types are searched for 'PiPL' resources and for those
that are found, the information contained therein is used to determine the
type of plug–in, code location, etc.

Plug–in property lists
The plug–in property list structure has a version number and a count
followed by one or more property structures.

typedef struct PIPropertyList
{

int32 version;

int32 count;

PIProperty properties[1];

} PIPropertyList;

Table 4-1: PIPropertyList structure

Type Field Description

int32 version Current version is 0.

int32 count Number of properties in the 'PiPL'. 0=no properties.

PIProperty properties A variable length array of property data structures.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 13

Plug–in properties
Each property has a vendor code, a key, an ID, and a length field.

typedef struct PIProperty
{

OSType vendorID;

OSType propertyKey;

int32 propertyID;

int32 propertyLength;

char propertyData[1];

/* Implicitly aligned to multiple of 4 bytes. */

} PIProperty;

Adobe After Effects properties in the Mac OS and Windows
Specific properties can be extended in an upwardly compatible fashion by
adding extra data at their end. The length field will allow an application to
determine how much data is present, so optional properties can be omitted
without concern. This is different from a fixed length structure where
omitted fields must be given a default value.

It is intended for PiPLs to collect all plug-in metadata in a single place. this
is useful for cross-platform development, since Windows lacks a resource
management mechanism.

The 'PiPL' format is fairly portable in that everything is four byte aligned.
All OSType and int32 fields are represented in native byte order for a given
platform so bytes of informationally indential PiPLs will differ between big-
endian machines that run the Mac OS, and little-endian machines running
Windows. The bytes of the PiPL section of a Windows binary resource are
identical, but reversed, to the same resource in the Mac OS. This should not
be of too much concern. As long as you use the pre-defined plug-in data
types (table 4-3), they will be interpreted and stored correctly.

Note: An undefined OSType will not be converted automatically. It is
normally interpreted as a long and you must supply the chars in
reverse order for Windows implementation.

The After Effects API byte order is always big-endian.

Table 4-2: PIProperty structure

Type Field Description

OSType vendorID The vendor defining this property type. This allows other
vendors to define their own properties in a way that does
not conflict with either Adobe or other vendors. It is recom-
mended that a registered application creator code be used
for the vendorID to ensure uniqueness. After Effects creator
code is 'FXTC' but all After Effects plug-ins use Adobe Photo-
shop’s vendorID '8BIM'.

OSType propertyKey Property type, detailed in table 4-4.

int32 propertyID =0. Used to store more than one property of a given type.
Reserved for future use.

int32 propertyLength Length of propertyData. Does not include any padding
bytes to achieve four byte alignment. May be zero.

variable propertyData Variable length field containing contents of this property.
Any values may be contained.

!!

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 14

Adobe After Effects Basic data types
The following types are used to define properties:

Table 4-3: Adobe After Effects Basic data types

Name Description

int16, int32 16 and 32 bit integers. Stored in native byte order.

long Same as int32.

short Same as int16.

OSType Same as int32. Typically denotes Mac OS 4 character filetypes like
'PiPL'.

PString Pascal style string where byte 1=length and content bytes follow.

CString C style string where the content bytes are terminated by NULL.

Structures Represented as would be in memory on the target platform. Native pad-
ding and alignment constraints are observed.

Arrays Represented as a contiguous set of entries in the 'PiPL' with native pad-
ding and alignment constraints observed.

ANIM_Float64 Double. 8-byte IEEE 7 5 4.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 15

General properties

These properties are common to all types of plug–in modules. The names of
the properties (such as “PIKindProperty”) are the same as the #define
names for the corresponding property keys.

Table 4-4: Adobe After Effects general property keys

Type Name Key Description

OStype PIKindProperty 0x6b696e64L
('kind')

Type or kind of plug-in.
'eFST'=Adobe After Effects Accelerator
'eFKT'=Adobe After Effects Effect
'FXIF'=Adobe After Effects I/O Format
'ARPI'=Adobe Illustrator
'8BXM'=Adobe Photoshop Accelerator
'8BAM'=Adobe Photoshop Acquire
'8BEM'=Adobe Photoshop Export
'8BFM'=Adobe Photoshop Filter
'8BIF'=Adobe Photoshop Format
'8BYM'=Adobe Photoshop Parser

PString PINameProperty 0x6e616d65L
('name')

Plug-in menu name for module in
PICategoryProperty sub-menu.

PString PICategoryProperty 0x63617467L
('catg')

In the Effects menu, what sub–menu
to list this plug–in.

int32 PIVersionProperty 0x76657273L
('vers')

Major and minor version number indi-
cating which revision of the plug–in
interface this plug–in was written for.
The major version number indicates
incompatible changes while the minor
version number indicates incremental
enhancements. The major version num-
ber is encoded in the most significant 16
bits of the 32 bit version number, the
minor version number is encoded in the
least significant 16 bits.

There are separate version numbers for
each kind of plug–in. The current ver-
sion for a given kind of plug–in is
defined by a preprocessor macro in the
header file defining the interface for
that plug–in type.

int16 PIPriorityProperty 0x70727479L
('prty')

Plug-in load order. Also used to control
the order in which items with the same
name show up in menus.

Lower numbers (including negative
ones) load first. If NULL, the default is
zero.

FlagSet PIImageModesProperty 0x6d6f6465L
('mode')

Which image modes the plug–in sup-
ports. Adobe Photoshop, has 11 modes:
bitmap, grayscale, indexed, RGB,
CMYK, HSL, HSB, multi–channel, duo-
tone, Lab, gray 16, and RGB 48.

This property determines whether your
plug–in will be active (black) or inactive
(gray) in Photoshop’s menus based on
the current document’s image mode.

OSType PIRequiredHostProperty 0x686f7374L
('host')

Creator code of required host, such as
'8BIM' for Adobe Photoshop.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 16

Code descriptor properties

Code descriptors tell Adobe After Effects the type and location of a plug–in’s
code. More than one code descriptor may be included to build a “fat” plug–
in which will run on different types of machines. After Effects will select the
best performing option. After Effects makes sure that the callback structure
is filled in with appropriate functions for the type of code that is loaded. So
for PowerPC code, native function pointers will be provided and routine
descriptor operations are not required either in calling the plug–in or for the
plug–in to invoke callback functions.

Table 4-5: Adobe Photoshop code descriptor properties

Type Name Key

PI68kCodeDesc PI68KCodeProperty 0x6d36386bL ('m68k')

This descriptor indicates a 68K code resource. The type for this property is:

typedef struct PI68KCodeDesc
{

OSType resourceType;
int16 resourceID;

} PI68KCodeDesc;

Any resource type may be used, but types of PIKindProperty from table 4-4 are strongly
recommended.

PI68kCodeDesc PI68KFPUCodeProperty 0x36386670L ('68fp')

This descriptor is just like a PI68KCodeDesc except it will only be used on Macintosh
machines that are equipped with FPU hardware. This allows vendors to easily ship plug–
ins that take advantage of FPU hardware but still run on non–FPU Macs.

PICFMCodeDesc PIPowerPCCodeProperty 0x70777063L ('pwpc')

This descriptor indicates a PowerPC code fragment in the data fork of the plug-in file. The
type for this property is as follows:

typedef struct PICFMCodeDesc
{

long fContainerOffset;

long fContainerLength;

char fEntryName[1];

} PICFMCodeDesc;

Described in table 4-6.

Table 4-6: PICFMCodeDesc structure

Type Field Description

long fContainerOffset Data fork offset to the code fragment start. This
allows more than one plug-in code fragment per file.

long fContainerLength Length of the code fragment. If the fragment extends
to the end of the file or is the only fragment, the con-
tainer length may be 0.

Pstring fEntryName Pascal string used to lookup the address of the func-
tion to call within the fragment. In order for the Code
Fragment Manager to find an entrypoint by name,
that name must be an exported symbol of the code
fragment. If NULL, the default entrypoint will be used.
fEntryName allows a single code fragment to contain
more than one plug-in.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 17

Filter–specific properties

These properties are applicable to Filter plug–in modules.

Table 4-7: Adobe After Effects filter-specific properties

Length Name Key

7 * 4-bytes PIFilterCaseInfoProperty 0x66696369L ('fici')

This key is for support for dynamically composited layers of image data.

A layer consists of color and transparency information for each pixel it contains. Previous
versions did not have a transparency component. Completely transparent pixels have an
undefined color. Filters will likely affect transparency data as well as color data. This is
especially true for filters which produce spatial distortions.

The filter case info property allows flexibility in how transparency data is presented to fil-
ters. It controls the filtering process and presentation of data to the plug–in. This prop-
erty provides information about what image data cases the plug–in supports. The current
filtering situation is then compared to the supported cases and the best fitting case is
choosen. The image data is then presented in that case. If none of the supported cases
are usable, the filter will be disabled.

The case properties are an array of seven four byte entries, detailed in table 4-9.

Table 4-8: Filter cases

#define name Description

1=filterCaseFlatImageNoSelection This is a background layer or a flat image.
There is no transparency data or selection.

2=filterCaseFlatImageWithSelection No transparency data, but a selection may be
present. The selection will be presented as
mask data.

3=filterCaseFloatingSelection Image data with an accompanying mask.

4=filterCaseEditableTransparencyNoSelection Layer with transparency editing enabled and
no selection.

5=filterCaseEditableTransparencyWithSelection Layer with transparency editing enabled and a
selection.

6=filterCaseProtectedTransparencyNoSelection Layer with transparency editing disabled and
no selection.

7=filterCaseProtectedTransparencyWithSelection Layer with transparency editing disabled and a
selection.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 18

FilterCaseInfo
Each of the 7 elements of the array contains a 4–byte FilterCaseInfo:

typedef struct FilterCaseInfo
{

char inputHandling;

char outputHandling;

char flags1;

char flags2;

} FilterCaseInfo;

inputHandling & outputHandling
The inputHandling and outputHandling fields specify the pre–processing and
post–processing actions on the image data respectively.

Table 4-9: FilterCaseInfo handling modes

Handling mode Description

0=filterDataHandlingCantFilter indicates that this case is not supported by the
plug–in filter

1=filterDataHandlingNone indicates that the plug–in filter does not expect
the plug–in host to do anything to the image
data.

The next three modes are matting cases, which are useful when performing distortions and blurs.

You can matte the data, process it, and then dematte to remove the added color.

For these cases, the matting is defined as follows:

mattedValue = ((unmattedValue * transparency) + 128) / 255 +
 ((matConstant * (255 - transparency)) + 128) / 255

Dematting is defined as follows:

unmattedValue = ((mattedValue - matConstant) ./ transparency) + matConstant

with the ./ operator defined as an 8 bit fixed–point divide and the result value=0...255.

2=filterDataHandlingBlackMat For the input case, matte the image data with
black=0 values based on the transparency. For
output, dematte the image data using black
(=0) values.

3=filterDataHandlingGrayMat Matte the image data with gray (=128) values
based on the transparency on input. Dematte
the image data using gray values on output.

4=filterDataHandlingWhiteMat Matte the image data with white (=255) values
based on the transparency on input. Dematte
the image data using white values on output.

Input-only related modes

5=filterDataHandlingDefringe Defringe transparent areas filling with the near-
est defined pixels using taxicab distance. Note
that this only applies to fully transparent pixels.

6=filterDataHandlingBlackZap Set color component of totally transparent pix-
els to black.

7=filterDataHandlingGrayZap Set color component of totally transparent pix-
els to gray.

8=filterDataHandlingWhiteZap Set color component of totally transparent pix-
els to white.

10=filterDataHandlingBackgroundZap Set color component of totally transparent pix-
els to the current background color.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 19

Note: This field is not a FlagSet. The first bit,
PIFilterDontCopyToDestinationBit, is in the least–significant bit
of the flag byte.

flags2
The flags2 field of FilterCaseInfo is reserved, and should be zero.

11=filterDataHandlingForegroundZap Set color component of totally transparent pix-
els to the current foreground color.

Output-only related modes

9=filterDataHandlingFillMask This mode results in the transparency mask
automatically being filled with full opacity in
the area affected by the filter. This is only valid
for the editable transparency cases. This option
is provided to make it easy to write a plug–in
similar to Photoshop’s Clouds plug–in, which fills
an area with a value.

Table 4-10: FilterCaseInfo flags1 parameters

Field Description

0=PIFilterDontCopyToDestinationBit Normally source data is copied to the destination
before filtering. This degrades performance for fil-
ters which write all the output pixels. Setting this
bit inhibits copying.

1=PIFilterWorksWithBlankDataBit Determines whether the filter will work on
“blank” areas that are completely transparent. If
not, an error message will be given when the filter
is invoked on a blank area. This is only valid for the
editable transparency case because that is the only
case where you could create opacity—in the pro-
tected transparency case, you would be left with
what you started with: completely blank data.

2=PIFilterFiltersLayerMaskBit In cases where transparency is editable, this flag
determines if Layer Masks are filtered. (See the
“Add Layer Mask” item in the Layers palette menu
to create a layer mask.) Setting this bit adds the
layer mask to the set of target channels if: trans-
parency for the layer is editable (i.e., this is one of
the editable transparency cases), the bit is set, and
the layer mask is specified as being positioned rela-
tive to the layer rather than the image in Layer
Mask Options. The distinction based on position is
based on the assumption that layer relative masks
are distorted with the layer; image relative masks
are independent of the layer.

Table 4-9: FilterCaseInfo handling modes (Continued)

Handling mode Description

!!

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 20

ANIM-specific properties

These properties are applicable to filters that are animatable.

The ANIM_FilterDescription struct defines the After Effects animatable filter
description and parameter information:

typedef struct ANIM_FilterDescription
{

ANIM_FilterInfo info;

ANIM_ParamAtom params[1];

} ANIM_FilterDescription, *ANIM_FilterDescriptionPtr,

**ANIM_FilterDescriptionH

'aFLT' property and ANIM_FilterInfo
The 'aFLT' property is described by the ANIM_FilterInfo struct:

typedef struct ANIM_FilterInfo
{

long spec_version_major;

long spec_version_minor;

long filter_params_version;

ANIM_FilterFlags flags;

long num_params;

char match_name[32];

long reserved[4];

} ANIM_FilterInfo;

Table 4-11: Adobe After Effects ANIM-specific properties

Length Name Key

32 bytes ANIM_FILT_INFO_PROP 0x61464C54L ('aFLT')

After Effects animatable filter description information. This key is for support for After
Effects animatable filters (ANIMs).

Each filter should have one 'aFLT' and an arbitrary number of 'aPAR' properties. The com-
bination of these two keys allows aware hosts to provide to animate the filter. If the filter
shouldn’t be driven, set ANIM_FF_DONT_DRIVE=TRUE. See table 4-12.

variable ANIM_PARAM_INFO_PROP 0x61464C54L ('aPAR')

After Effects animatable filter parameter information. This key is for support for After
Effects animatable filters (ANIMs).

Each filter should have one 'aFLT' and an arbitrary number of 'aPAR' properties. The com-
bination of these two keys allows aware hosts to provide to animate the filter.

The total number of 'aPAR' properties is included in the 'aFLT'. An 'aPAR' is distinguished
but its PiPL ID, which progress from 0 to (number of parameters - 1). The order of
the 'aPAR' properties implicitly reflects the order of the params in the filter’s parameter
block. See table 4-14.

Table 4-12: ANIM_FilterInfo structure

Type Field Description

long ANIM_MAJOR_VERSION =1. Major version number.

long ANIM_MINOR_VERSION =0. Minor version number.

long filter_params_version This version will be stored to disk with the
params. The params will be discarded if it’s dif-
ferent then the ANIM version of the existing fil-
ter.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 21

Note: This field is not a FlagSet. The first bit,
ANIM_FF_HAS_RANDOMNESS, is in the least–significant bit of the flag
byte.

'aPAR' property and ANIM_ParamAtom
The 'aPAR' property is described by the ANIM_ParamAtom struct:

typedef struct ANIM_ParamAtom
{

char external_name[32];

long id;

ANIM_DataType data_type;

ANIM_UIType ui_type;

ANIM_Float64 valid_min;

ANIM_Float64 valid_max;

ANIM_Float64 ui_min;

ANIM_Float64 ui_max

ANIM_ParamFlags flags;

long byte_size;

long reserved[4];

ANIM_FilterFlags flags Filter flags. See table 4-13.

long num_params Number of parameters.

char match_name Cstring. Host will save this name to disk and
use it to match when loading from disk.

long reserved[4] Reserved for future use. Set to zero.

Table 4-13: ANIM_FilterFlags structure

Field Description

0=ANIM_FF_HAS_RANDOMNESS Same parameters and source does not produce
exact same results.

1=ANIM_FF_NON_GEOMETRIC Pixel output depends on input pixel, not interpola-
tion, exterpolation, or formula.

2=ANIM_FF_FG_ANIMATABLE Host should allow animation of foreground color.

3=ANIM_FF_BG_ANIMATABLE Host should allow animation of background color.

4=ANIM_FF_PARAMS_IN_GLOBALS Host should store globals according to filter specs.

5=ANIM_FF_DIALOG_IN_RENDER Filter inquiries user during filterSelectorStart
or filterSelectorContinue instead of
filterSelectorParameters.

6=ANIM_FF_PARAMS_ARE_MAC_HANDLE Parameters are stored as Macintosh handle.

7=ANIM_FF_PARAMS_ARE_HANDLE Parameters are stored as ANSI handle.

8=ANIM_FF_PARAMS_ARE_PTR Parameters are stored as Pointers.

9=ANIM_FF_DOESNT_NEED_DLOG Dialog doesn’t init anything; host may fill opaque
data with zeros and non-opaque data with reason-
able values.

10=ANIM_FF_DONT_DRIVE_ME Don’t load plug-in.

11=ANIM_FF_RESERVED0 Reserved.

12=ANIM_FF_RESERVED1 Reserved.

13-31=Reserved Reserved.

Table 4-12: ANIM_FilterInfo structure (Continued)

Type Field Description

!!

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 22

} ANIM_ParamAtom;

Table 4-14: ANIM_ParamAtom structure

Type Field Description

char external_name Cstring. Can be localized.

long id locally unique ID for paramter. Not the PiPL ID.
0=Reserved; <0=Reserved for host use.

The host uses this field to match parameters
stored to disk with those in the parameter han-
dle. You may add or remove parameters to your
plug-in without changing
filter_params_version.

If you change this value in the future and
ANIM_FF_DONT_NEED_DLOG=FALSE, old data
may be discarded.

ANIM_DataType data_type If opaque, ignore below except byte_size. See
table 4-15.

ANIM_UIType ui_type User interface type. See table 4-16.

ANIM_Float64 valid_min Used for slider. Set valid_min=valid_max=0 for
full range.

ANIM_Float64 valid_max

ANIM_Float64 ui_min Used for slider. Set ui_min=ui_max=0 for full
range.

ANIM_Float64 ui_max

ANIM_ParamFlags flags Parameter flags. See table 4-17.

long byte_size Byte size of parameter data.

long reserved[4] Reserved for future use. Set to zero.

Table 4-15: ANIM_DataType structure

Field Description

0=ANIM_DT_OPAQUE Opaque.

1=ANIM_DT_CHAR Character.

2=ANIM_DT_SHORT Short integer.

3=ANIM_DT_LONG Long integer.

4=ANIM_DT_UNSIGNED_CHAR Unsigned character.

5=ANIM_DT_UNSIGNED_SHORT Unsigned short integer.

6=ANIM_DT_UNISNGED_LONG Unsigned long integer.

7=ANIM_DT_FIXED Fixed 16:16.

8=ANIM_DT_UNSIGNED_FIXED Fixed unsigned 16:16.

9=ANIM_DT_EXTENDED_96 12 byte value. Not recommended.

10=ANIM_DT_DOUBLE_64 8 byte IEEE 7 5 4.

11=ANIM_DT_FLOAT_32 4 byte IEEE 7 5 4.

Table 4-16: ANIM_UIType structure

Size Field Description

0 0=ANIM_UI_NO_UI Still must have name and data type. If
not opaque, will animate.

sizeof(data_type) 1=ANIM_UI_ANGLE Angle.

sizeof(data_type) 2=ANIM_UI_SLIDER Slider.

2*sizeof(data_type) 3=ANIM_UI_POINT (h,v) Point.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 23

Note: These fields are not FlagSets. For instance, the first bit of the
ANIM_ParamFlags structure, ANIM_PF_IS_RES_DEPENDENT, is in the
least–significant bit of the flag byte.

4*sizeof(data_type) 4=ANIM_UI_RECT (t,l,b,r) Rectangle.

3*sizeof(data_type) 5=ANIM_UI_COLOR_RGB RGB Color space.

4*sizeof(data_type) 6=ANIM_UI_COLOR_CMYK CMYK Color space.

3*sizeof(data_type) 7=ANIM_UI_COLOR_LAB L*a*b Color space.

Table 4-17: ANIM_ParamFlags structure

Field Description

0=ANIM_PF_IS_RES_DEPENDENT Boolean. TRUE=your plug-in can adjust parameters
dynamically as host changes resolution.

1=ANIM_PF_SPACE_IS_RELATIVE For ANIM_UI_POINT and ANIM_UI_RECT only.

TRUE=Relative mode: 0.0=left or top; 1.0=right or bot-
tom.

FALSE=Absolute mode: Value=pixels.

2=ANIM_PF_RESTRICT_BOUNDS For ANIM_UI_POINT and ANIM_UI_RECT only.

TRUE=Don’t call filter when point or rect is outside
bounds of source.

FALSE=Call filter with any input point or rect.

Table 4-16: ANIM_UIType structure (Continued)

Size Field Description

!!

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 24

Effect–specific properties

These properties are applicable to Effect plug–in modules.

PF_OutFlags

The Effect Global Outflags describe how your effect responds to many of the
PF_Cmd sequence callbacks. Unless otherwise noted, you should set and send
these flags at PF_Cmd_GLOBAL_SETUP.

Table 4-18: Adobe After Effects effect-specific properties

Type Name Key Description

2 * short AEPiPLVersion 0x65505652L
('ePVR')

Major and sub-version of Adobe
After Effects PiPL. Must be 2 and
0.

2 * short PF_PLUG_IN_VERSION 0x65535652L
('eSVR')

Major and sub-version of Effect
specification. Must be 11 and 0.

int32 PF_Vers 0x65564552L
('eVER')

Effect version. See table 4-19.

int32 PF_Outflags 0x65474c4fL
('eGLO')

Global flags for effect output.
See table 4-20.

Cstring AEEffectMatchName 0x654d4e41L
('eMNA')

String with effect name.

Table 4-19: PF_Vers parameters

Field Description

0...8=PF_Version_BUILD Build version number.

9...10=PF_Version_STAGE Stage of build by name.
0=Develop (PF_Stage_DEVELOP)
1=Alpha (PF_Stage_ALPHA)
2=Beta (PF_Stage_BETA)
3=Release (PF_Stage_RELEASE)

11...14=PF_Version_BUGFIX Version number of bug fix release.

15...18=PF_Version_SUBVERS Minor/sub-version number.

19...21=PF_Version_VERS Major version number.

22...31=Reserved Reserved. Must be zero.

Table 4-20: PF_Outflags parameters

Field Description

0=PF_OutFlag_KEEP_RESOURCE_OPEN Doesn’t close effect when done; keeps
resource fork and parameters available.

1=PF_OutFlag_WIDE_TIME_INPUT Effect requests information about a non-
current time (such as the previous video
frame).

2=PF_OutFlag_NON_PARAM_VARY Effect bases output on more than the
param list.

3=PF_OutFlag_SEND_PARAMS_UPDATE Effect updates controls values after param-
eter changes. Ex: If you want a slider to
display text descriptions of numberical val-
ues, specify this flag, then get
PF_Cmd_PARAMS_UPDATE whenever the
user alter parameters.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 25

4=PF_OutFlag_SEQUENCE_DATA_NEEDS_FLATTENING Sequence data handle contains other
pointers or handles. For sequence data,
you will be called with
PF_Cmd_SEQUENCE_RESETUP. Store a bool-
ean at a common offset in your unflat-
tened and flattened data indicating
whether it’s flat or not. On
PF_Cmd_SEQUENCE_RESETUP and
flat=TRUE then you should unflatten the
data, free the flattened data handle, and
set sequence_data in PF_OutData.

If you set the data=NULL when you flatten
it, you will not be sent
PF_Cmd_SEQUENCE_RESETUP to unflatten.
Instead, you may get a RENDER call with
data=NULL.

5=PF_OutFlag_I_DO_DIALOG Effect responds to PF_Cmd_DO_DIALOG.

6=PF_OutFlag_USE_OUTPUT_EXTENT Effect only process or changes behavior
based on visible-image-area rect; extent
rect change should cause re-render.

7=PF_OutFlag_SEND_DO_DIALOG Effect requires options dialog box to be
presented at least once. Set during
PF_Cmd_SEQUENCE_SETUP.
PF_Cmd_DO_DIALOG will be sent right
after.

8=PF_OutFlag_DISPLAY_ERROR_MESSAGE If return_msg in PF_OutData is a string,
the host will display it. TRUE=display string
as error dialog; otherwise display string as
generic dialog.

These fields are new since version 2.0 of Adobe After Effects.

9=PF_OutFlag_I_EXPAND_BUFFER Set if you expand the effect buffers
beyond the layer dimensions.

10=PF_OutFlag_PIX_INDEPENDENT Output of a given pixel is not dependent
on the values of surrounding pixels.

11=PF_OutFlag_I_WRITE_INPUT_BUFFER Effect writes to the input buffer. Use with
discretion: this is useful as a scratch buffer,
but invalidates some host speedups in ren-
dering.

12=PF_OutFlag_I_SHRINK_BUFFER Your effect can shrink its buffer based on
the extent rect. Use for memory efficiency.

13=PF_OutFlag_WORKS_IN_PLACE TRUE=effect can use the same buffer for
both input and output; otherwise requires
separate buffers.

14=PF_OutFlag_SQUARE_PIX_ONLY Supports square pixels. Ignored.

15=PF_OutFlag_CUSTOM_UI Has custom user interface and will process
PF_Cmd_EVENT. See AE_EffectUI.h.

16=PF_OutFlag_CUSTOM_NTRP Use custom interpolation. See
PF_FlatCustomDef in AEEffect.h.

17=PF_OutFlag_REFRESH_UI If set, host will call plug-in with update UI
event right before plug-in exits.

18=PF_OutFlag_NOP_RENDER Set during frame setup if current render-
ing won’t affect the image and may be
skipped.

19=PF_OutFlag_I_USE_SHUTTER_ANGLE Effect is based on shutter_angle field.

20=PF_OutFlag_I_USE_AUDIO Effect is based on audio values. See audio
callbacks in the After Effects SDK.

Table 4-20: PF_Outflags parameters (Continued)

Field Description

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 26

Note: These fields are not FlagSets. For instance, the first bit of the
PF_Outflags structure, PF_OutFlag_KEEP_RESOURCE_OPEN, is the
least–significant bit of the flag byte.

21=PF_OutFlag_I_AM_OBSOLETE Set if you want your plug-in to be avail-
able, but not appear in the Effect menu.

22=PF_OutFlag_RESERVED1 Reserved. Must be zero.

23=PF_OutFlag_RESERVED2 Reserved. Must be zero.

24=PF_OutFlag_RESERVED3 Reserved. Must be zero.

25=PF_OutFlag_RESERVED4 Reserved. Must be zero.

26...31=Reserved Reserved. Must be zero.

Table 4-20: PF_Outflags parameters (Continued)

Field Description

!!

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 27

Format–specific properties

These properties are applicable to Format plug–in modules.

Table 4-21: Adobe After Effects format-specific properties

Type Name Key Description

TypeCreator-
Pair

PIFmtFileTypeProperty 0x666d5443L
('fmTC')

Default type and creator code
used for files newly created with
this format plug–in.

Under Windows, files don’t store
TypeCreator information,
except internally, so this property
is not required; they are always
interpreted as of type 'BINA' and
creator 'mdos'.

All the info regarding what files
can be read and written is
obtained from the
PIReadExtProperty or the
PIFilteredExtProperty.

Under Windows, PiMI extensions
are converted to
PIReadExtPropertys, so use of
PIFilteredExtProperty
requires additional coding if you
are porting a 16–bit plug–in
format module to 32–bit.

Array of
TypeCreator-
Pair

PIReadTypesProperty 0x52645479L
('RdTy')

List of type and creator pairs
which the format plug–in can
read. Specifying a value of four
spaces (0x20202020L) matches
any type or creator.

Array of
TypeCreator-
Pair

PIFilteredTypesProperty 0x66667454L
('fftT')

List of type and creator pairs for
which the file format plug–in
should be called to determine if
the file can be read. Specifying a
value of four spaces
(0x20202020L) matches any type
or creator.

Array of
OSTypes

PIReadExtProperty 0x52644578L
('RdEx')

List of extensions which the for-
mat plug–in can read. The exten-
sion is stored in the first three
characters of the OSType. The
fourth character must be a space.

Array of
OSTypes

PIFilteredExtProperty 0x66667445L
('fftE')

List of extensions for which the
file format plug–in should be
called to determine if the file can
be read.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 28

FlagSet PIFmtFlagsProperty 0x666d7466L
('fmtf')

This property contains a set of
flags which control the operation
of file format plug–ins. The
default value for any flag is
FALSE. See table 4-22.

Point PIFmtMaxSizeProperty 0x6d78737aL
('mxsz')

The maximum number of rows
and columns that can be in an
image saved in this format. Pho-
toshop will use this field to
screen out ineligible formats.

Array of
int16s

PIFmtMaxChannelsProperty 0x6d786368L
('mxch')

An array of counts of the maxi-
mum number of channels which
can/will be saved for a given
image mode.

This array is indexed by the plug–
in mode constants. For example,
if your format plug–in supports a
single alpha channel in RGB
mode, you should set
maxChannels
[plugInModeRGBColor]=4.

A plug–in may still be asked to
save more channels than it
reports it can support. This field
exists primarily so that
Photoshop can warn the user
that alpha channels will be
discarded.

Table 4-22: PIFmtFlagsProperty parameters

Field Description

0=PIFmtReadsAllTypesFlag Obsolete.

1=PIFmtSavesImageResourcesFlag Resources besides image data, such as printing
information, pen tool paths, etc.. are known as
image resources. The plug–in format has the
option of taking responsibility for these resources
by reading and writing a block of data containing
the image resources. If FALSE, Photoshop will add
the image resources to the file’s Mac OS resource
fork but this will not be portable to other plat-
forms.

2=PIFmtCanReadFlag =TRUE if the file format can read files.

3=PIFmtCanWriteFlag =TRUE if the file format can write files.

4=PIFmtCanWriteIfReadFlag Whether plug–in can write the file if the plug–in
originally read the file.

Table 4-21: Adobe After Effects format-specific properties (Continued)

Type Name Key Description

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 29

Input/output-specific properties

These properties are applicable to Input/Ouput Format plug–in modules.

AEImageFormatExtensionInfo

typedef struct AEImageFormatExtensionInfo
{

long majorVersion;

long minorVersion;

int32 extensionFlags;

long reserved;

char signature;

} AEImageFormatExtensionInfo;

Table 4-23: Adobe After Effects format-specific properties

Type Name Key Description

int32 AEImageFormatExtensionInfo 0x46584d46L
('FXMF')

Adobe After Effects Imageformat
Extension Information. Describes
dynamic resources of module. See
table 4-24.

Table 4-24: AEImageFormatExtensionInfo structure

Type Field Description

long majorVersion Major version number.

long minorVersion Minor version number.

int32 extensionFlags Flags describing resource. See table 4-25.

long Reserved. Reserved.

char signature Cstring. Localizable name of plug-in.

Table 4-25: AEImageFormatExtensionInfo extensionFlags parameters

Field Description

0=Input Input module present.

1=Output Output module present.

2=File Direct correspondence to filetype in file system.

3=Still Still image support (Video=FALSE). (PICS file format is an example
of Video).

4=Video Video support (Still=FALSE)

5=Framestore Time independent frame store. If TRUE, Still=TRUE.

6=InteractGet User interaction required for new sequence. Required if
File=FALSE and Input=TRUE.

7=InteractPut User interaction required for new output. Required if File=FALSE
and Output=TRUE.

8=InteractPutRevert User interaction required for new output, even if revertInfo is
available.

9=NonSeqAddFrame Add frame can handle non-sequential times.

10=NoOutputDialog Has no output options dialog.

11...31=Reserved. Reserved. Must be zero.

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 30

Adobe After Effects PiPL syntax

This information is included as reference material. If you use the example
source code and the documentation included on the Adobe After Effects
SDK, you probably won’t need to worry about the specifics of the PiPL
syntax.

Miscellaneous definitions

<OSType>

<int16>

<int32>

<float64>

<epsilon> :=

Beginning of real grammar.

<PiPL spec> := <resource header> <resource body>

<resource header> :=

"resource" "'PiPL'" "("

 <resourceID> <optional resource name> <optional attribute list>

")"

<optional name> :=

<epsilon> |

"," <string>

<optional attribute list> :=

<epsilon> |

"," <attribute> <attribute list tail>

<attribute list tail> :=

<epsilon> |

 "|" <attribute> <attribute list tail>

<resource body> :=

"{" "{"

<property list>

"}" "}"

<property list tail> :=

<epsilon> |

"," <property> <property list tail>

<property list> :=

<epsilon>

| <property> <property list tail>

<property> :=

<kind property> |

<version property> |

<priority property> |

<required host property> |

<name property> |

<category property> |

<68k code descriptor property> |

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 31

<powerpc code descriptor property> |

<win32 x86 code property> |

<supported modes property> |

<filter case info property> |

<format file type property> |

<read types property> |

<write types property> |

<filtered types property> |

<read extensions property> |

<write extensions property> |

<filtered extensions property> |

<format flags property> |

<format maximum size property> |

<format maximum channels property> |

<parsable types property> |

<parsable extensions property> |

<filtered parsable types property> |

<filtered parsable extensions property> |

<parsable clipboard types property> |

<animatable filter description>

<kind property> := "Kind" "{" <kind ID> "}"

<kind ID> := <OSType> |

"Filter" |

"Parser" |

"ImageFormat" |

"Extension" |

"Acquire" |

"Export"

<version property> := "Version" "{" <version clause> "}"

<version clause> := <int32> |

"(" <wired version ID high> "<<" "16" ")" "|"

"(" <wired version ID low> ")" |

<wired version ID>

<wired version ID> := "FilterVersion" |

"ParserVersion" |

"ImageFormatVersion" |

"ExtensionVersion" |

"AcquireVersion" |

"ExportVersion"

<wired version ID high> := "latestFilterVersion" |

"latestParserVersion" |

"latestImageFormatVersion" |

"latestExtensionVersion" |

"latestAcquireVersion" |

"latestExportVersion"

<wired version ID high> := "latestFilterSubVersion" |

"latestParserSubVersion" |

"latestImageFormatSubVersion" |

"latestExtensionSubVersion" |

"latestAcquireSubVersion" |

"latestExportSubVersion"

<priority property> := "Priority" "{" <int16> "}"

<required host property> := "Host" "{" <OSType> "}"

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 32

<name property> := "Name" "{" <string> "}"

<category property> := "Category" "{" <string> "}"

<68k code descriptor property> := "Code68k" "{" <OSType>, <int16> "}"

<powerpc code descriptor property> := "CodePowerPC" "{"

<int32>, <int32> <optional name> "}"

<win32 x86 code property> := "CodeWin32X86" "{" <string> "}

<bitmap support> := "noBitmap" | "doesSupportBitmap"

<grayscale support> := "noGrayScale" | "doesSupportGrayScale"

<indexed support> := "noIndexedColor" | "doesSupportIndexedColor"

<RGB support> := "noRGBColor" | "doesSupportRGBColor"

<CMYK support> := "noCMYKColor" | "doesSupportCMYKColor"

<HSL support> := "noHSLColor" | "doesSupportHSLColor"

<HSB support> := "noHSBColor" | "doesSupportHSBColor"

<multichannel support> := "noMultichannel" | "doesSupportMultichannel"

<duotone support> := "noDuotone" | "doesSupportDuotone"

<LAB support> := "noLABColor" | "doesSupportLABColor"

<supported modes property> := "SupportedModes"

"{"

<bitmap support> ","

<grayscale support> ","

<indexed support> ","

<RGB support> ","

<CMYK support> ","

<HSL support> ","

<HSB support> ","

<multichannel support> ","

<duotone support> ","

<LAB support>

"}"

<filter case info property> := "FilterCaseInfo"

"{"

"{"

<filter info case> # filterCaseFlatImageNoSelection

<filter info case> # filterCaseFlatImageWithSelection

<filter info case> # filterCaseFloatingSelection

<filter info case> # filterCaseEditableTransparencyNoSelection

<filter info case> # filterCaseEditableTransparencyWithSelection

<filter info case> # filterCaseProtectedTransparencyNoSelection

<filter info case> # filterCaseProtectedTransparencyWithSelection

"}"

"}"

<filter info case> :=

<input matting> "," <output matting> ","

<layer mask flag> "," <blank data flag> "," <copy source flag>

<input matting> :=

"inCantFilter" |

"inStraightData" |

"inBlackMat" |

"inGrayMat" |

"inWhiteMat" |

"inDefringe" |

"inBlackZap" |

"inGrayZap" |

"inWhiteZap" |

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 33

"inBackgroundZap" |

"inForegroundZap"

<ouput matting> :=

"outCantFilter" |

"outStraightData" |

"outBlackMat" |

"outGrayMat" |

"outWhiteMat" |

"outFillMask"

<layer mask flag> := "doesNotFilterLayerMasks" | "filtersLayerMasks"

<blank data flag> := "doesNotWorkWithBlankData" | "worksWithBlankData"

<copy source flag> := "copySourceToDestination" |

"doNotCopySourceToDestination"

<type creator pair> :=

<OSType> "," <OSType>

<format file type property> :=

"{"

<type creator pair>

"}"

<type creator pair list tail> :=

<epsilon> |

"," "{" <type creator pair> "}" <type creator pair list tail>

<type creator pair list> :=

<epsilon> |

"{" <type creator pair> "}" <type creator pair list tail>

<read types property> :=

"{"

<type creator pair list>

"}"

<write types property> :=

"{"

<type creator pair list>

"}"

<filtered types property> :=

"{"

<type creator pair list>

"}"

<ostype list tail> :=

<epsilon> |

"," "{" <OSType> "}" <ostype list tail>

<ostype list> :=

<epsilon> |

"{" <OSType> "}" <ostype list tail>

<read extensions property> :=

"{"

<ostype list>

"}"

<write extensions property> :=

"{"

<ostype list>

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 34

"}"

<filtered extensions property> :=

"{"

<ostype list>

"}"

<saves image resources flag> :=

"fmtDoesNotSaveImageResources" | "fmtSavesImageResources"

<can read flag> :=

"fmtCannotRead" | "fmtCanRead"

<can write flag> :=

"fmtCannotWrite" | "fmtCanWrite"

<write if read flag> :=

"fmtWritesAll" | "fmtCanWriteIfRead"

<format flags property> :=

"{"

<saves image resources flag> ","

<can read flag> ","

<can write flag> ","

<write if read flag>

"}"

<format maximum size property> :=

"{"

<int16>, <int16>

"}"

<format maximum channels property> :=

<parsable types property> :=

"{"

<type creator pair list>

"}"

<parsable extensions property> :=

"{"

<ostype list>

"}"

<filtered parsable types property> :=

"{"

<type creator pair list>

"}"

<filtered parsable extensions property> :=

"{"

<ostype list>

"}"

<parsable clipboard types property> :=

"{"

<ostype list>

"}"

<animatable filter description> :=

"{"

<animatable filter information>, <animatable filter parameters>

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 35

"}"

<animatable filter information> :=

{

<long>, <long>, <long>,

<animatable filter flag>,

<long>, <char[32]>, <long>

}

<animatable filter flag> :=

"ANIM_FF_HAS_RANDOMNESS" |

"ANIM_FF_NON_GEOMETRIC" |

"ANIM_FF_FG_ANIMATABLE" |

"ANIM_FF_BG_ANIMATABLE" |

"ANIM_FF_PARAMS_IN_GLOBALS" |

"ANIM_FF_DIALOG_IN_RENDER" |

"ANIM_FF_PARAMS_ARE_MAC_HANDLE" |

"ANIM_FF_PARAMS_ARE_PTR" |

"ANIM_FF_DOESNT_NEED_DLOG" |

"ANIM_FF_DONT_DRIVE_ME" |

"ANIM_FF_RESERVED0" |

"ANIM_FF_RESERVED1"

<animatable filter parameters> :=

{

<char[32]>, <long>,

<animatable data type>, <animatable ui type>,

<float64>, <float64>, <float64>, <float64>,

<animatable parameter flags>, <long>, <long>

}

<animatable data type> :=

"ANIM_DT_OPAQUE" |

"ANIM_DT_CHAR" |

"ANIM_DT_SHORT" |

"ANIM_DT_LONG" |

"ANIM_DT_UNSIGNED_CHAR" |

"ANIM_DT_UNSIGNED_SHORT" |

"ANIM_DT_UNSIGNED_LONG" |

"ANIM_DT_FIXED" |

"ANIM_DT_UNSIGNED_FIXED" |

"ANIM_DT_EXTENDED_96" |

"ANIM_DT_DOUBLE_64" |

"ANIM_DT_FLOAT_32"

<animatable ui type> :=

"ANIM_UI_NO_UI" |

"ANIM_UI_ANGLE" |

"ANIM_UI_SLIDER" |

"ANIM_UI_POINT" |

"ANIM_UI_RECT" |

"ANIM_UI_COLOR_RGB" |

"ANIM_UI_COLOR_CMYK" |

"ANIM_UI_COLOR_LAB"

<animatable parameter flags> :=

"ANIM_PF_IS_RES_DEPENDENT" |

"ANIM_PF_SPACE_IS_RELATIVE" |

"ANIM_PF_RESTRICT_BOUNDS"

<effects pipl version> := {

<long>, <long>

}

4. Adobe After Effects PiPLs

Cross-Application Plug-in Development Resource Guide 36

<pf spec version> := {

<long>, <long>

}

<effect version> := {

<long>

}

<effect info flags> := {

<int16>

}

<effect global outflags> :=

"PF_OutFlag_KEEP_RESOURCE_OPEN" |

"PF_OutFlag_WIDE_TIME_INPUT" |

"PF_OutFlag_NON_PARAM_VARY" |

"PF_OutFlag_SEND_PARAMS_UPDATE" |

"PF_OutFlag_SEQUENCE_DATA_NEEDS_FLATTENING" |

"PF_OutFlag_I_DO_DIALOG" |

"PF_OutFlag_USE_OUTPUT_EXTENT" |

"PF_OutFlag_SEND_DO_DIALOG" |

"PF_OutFlag_DISPLAY_ERROR_MESSAGE" |

"PF_OutFlag_I_EXPAND_BUFFER" |

"PF_OutFlag_PIX_INDEPENDENT" |

"PF_OutFlag_I_WRITE_INPUT_BUFFER" |

"PF_OutFlag_I_SHRINK_BUFFER" |

"PF_OutFlag_WORKS_IN_PLACE" |

"PF_OutFlag_SQUARE_PIX_ONLY" |

"PF_OutFlag_CUSTOM_UI" |

"PF_OutFlag_CUSTOM_NTRP" |

"PF_OutFlag_REFRESH_UI" |

"PF_OutFlag_NOP_RENDER" |

"PF_OutFlag_I_USE_SHUTTER_ANGLE" |

"PF_OutFlag_I_USE_AUDIO" |

"PF_OutFlag_I_AM_OBSOLETE" |

"PF_OutFlag_RESERVED1" |

"PF_OutFlag_RESERVED2" |

"PF_OutFlag_RESERVED3" |

"PF_OutFlag_RESERVED4"

<effect match name> := {

<string>

}

<imageformat extension info> :=

"Input" | "Output" | "File" | "Still" | "Video" | "Framestore" |

"InteractGet" | "InteractPut" | "InteractPutRevert" |

"AddFrameNonSeq" | "NoOutputDialog"

Cross-Application Plug-in Development Resource Guide 37

55. Adobe Illustrator

This chapter describes properties and useful resources of Adobe Illustrator
for creating plug-ins that work under multiple applications.

Table 5-1: Adobe Illustrator version and signature information

Description Value

Mac OS version 6.0

Mac OS release date 2/6/96

Windows version 4.1

Windows release date 6/5/95

Backward-compatibility targets Mac, Win 5.5, 4.1

Signature 'ART5'

5. Adobe Illustrator

Cross-Application Plug-in Development Resource Guide 38

Adobe Illustrator and Adobe Photoshop

Host version support
Adobe Illustrator and the Photoshop Adapter plug-in emulates the
Photoshop 3.0.4 Plug-in API. All of the 3.0.4 API calls and functions are
implemented, except:

1. Any callbacks related to Acquire or Export modules.

2. The Color Services suite returns -1 error.

3. HostGetProperty, propInterpolationMethod returns 1 + noErr.

4. HostSetProperty returns -1 error.

5. ProcessEvent does nothing.

6. AdvanceState is not supported in Format writing.

7. Photoshop files are flattened when imported.

8. Multiple channel information is not available.

9. Indexed color mode.

10. Alternate layouts, layers, padding, transparency, and tiling.

Table 5-2: Adobe Illustrator emulating Photoshop host

Description Value

Signature 'ART5'

Host version support 3.0.4 subset, N/A

Required adaptor Photoshop Adapter plug-in

Resource 'PiPL'

Supported module types Filter, Format

Plug-in folder default Adobe Illustrator/Plug-ins/(Gallery
Effects)

Plug-in aliases Automatically resolved by Illustrator.

Plug-in load order Loads references, but not code until execution
request.

How to access the different plug-ins while using Adobe Illustrator.

Filter modules Filter»(sub-menu)

Format modules File»Save as...

Cross-Application Plug-in Development Resource Guide 39

66. Adobe Illustrator PiPLs

The Plug-in Propery List Resource
Plug-in Property List, 'PiPL', resources provide a host application
information about a plug-in. This information includes indicators about the
types and locations of available code, versions, and other dependencies of
the plug-in. PiPLs were first used in Adobe Photoshop 3.0 plug-ins. They
have been adapted for use with the Adobe Illustrator 6.0 API by ignoring
certain Photoshop specific properties and defining others. The general PiPL
definition is the same as that for Photoshop and these notes are based on a
description from the Photoshop 3.0 SDK. This chapter describes what you
need to get quickly started with PiPLs in Illustrator.

PIPropertyList
typedef struct PIPropertyList

{

int32 version;

int32 count;

AIProperty properties[1];

} PIPropertyList;

Properties
typedef struct AIProperty

{

OSType vendorID;

OSType propertyKey;

int32 propertyID;

int32 propertyLength;

char propertyData [1];

/* Implicitly aligned to multiple of 4 bytes. */

} AIProperty;

Table 6-1: PIPropertyList structure

Type Field Description

int32 version Current version is 0.

int32 count Number of properties in the 'PiPL'. 0=no properties.

AIProperty properties A variable length array of property data structures.

Table 6-2: AIProperty structure

Type Field Description

OSType vendorID This field identifies the vendor defining this property type.
This allows other vendors to define their own properties in a
way that does not conflict with either Adobe or other ven-
dors. It is recommended that a registered application cre-
ator code be used for the vendorID to ensure uniqueness.
All Photoshop properties use the vendorID '8BIM'. All Illus-
trator 6.0 plug-ins use the vendorID 'ADBE'.

OSType propertyKey Property type, detailed in table 6-3.

6. Adobe Illustrator PiPLs

Cross-Application Plug-in Development Resource Guide 40

Each property must be padded such that the next property begins on a four
byte boundary.

Adobe Illustrator properties in the Mac OS and Windows
Specific properties can be extended in an upwardly compatible fashion by
adding extra data at their end. The length field will allow an application to
determine how much data is present, so optional properties can be omitted
without concern. This is different from a fixed length structure where
omitted fields must be given a default value.

It is intended for PiPLs to collect all plug-in metadata in a single place. this
is useful for cross-platform development, since Windows lacks a resource
management mechanism.

The 'PiPL' format is fairly portable in that everything is four byte aligned.
All OSType and int32 fields are represented in native byte order for a given
platform so bytes of informationally indential PiPLs will differ between big-
endian machines that run the Mac OS, and little-endian machines running
Windows. The bytes of the PiPL section of a Windows binary resource will
be indentical, but reversed, to the same resource in the Mac OS. This should
not be of too much concern. As long as you use the pre-defined plug-in data
types (table 6-3), they will be interpreted and stored correctly.

Note: An undefined OSType will not be converted automatically. It is
normally interpreted as a long and you must supply the chars in
reverse order for Windows implementation.

The Illustrator API byte order is always big-endian.

Adobe Illustrator basic data types
The following types are used to define properties:

int32 propertyID =0. Used to store more than one property of a given type.
Reserved for future use.

int32 propertyLength Length of propertyData. Does not include any padding
bytes to achieve four byte alignment. May be zero.

char propertyData Variable length field containing contents of this property.
Any values may be contained.

Table 6-3: Adobe Illustrator basic data types

Name Description

int16, int32 16 and 32 bit integers. Stored in native byte order.

OSType Same as int32. Typically denotes Mac OS 4 character filetypes like 'PiPL'.

PString Pascal style string where byte 1=length and content bytes follow.

CString C style string where the content bytes are terminated by NULL.

Structures Represented as would be in memory on the target platform. Native padding
and alignment constraints are observed.

Arrays Represented as a contiguous set of entries in the 'PiPL' with native pad-
ding and alignment constraints observed.

Table 6-2: AIProperty structure (Continued)

Type Field Description

!!

6. Adobe Illustrator PiPLs

Cross-Application Plug-in Development Resource Guide 41

General properties

The following general property keys are recognized by Adobe Illustrator.

Table 6-4: Adobe Illustrator general property keys

Type Name Key Description

OStype AIKindProperty 0x6b696e64L
('kind')

Type or kind of plug-in. Adobe Illustrator =
'ARPI'. Photoshop filter='8BFM'.

int32 AIVersionProperty 0x69767273L
('ivrs')

Version of the plug-in interface expected by
the plug-in. A version change should be
assumed to be 100% incompatible with
other versions.

6. Adobe Illustrator PiPLs

Cross-Application Plug-in Development Resource Guide 42

Code Descriptor Properties

Code descriptors tell the host application the location of a plug-in’s code.
More than one code descriptor may be included to build a “fat” plug-in
which will run on different types of machines. Illustrator does not support
emulated plug-ins, so if a code descriptor for the running platform does not
exist, the plug-in will not be loaded. Illustrator exports function suites with
appropriate functions for the type of code that is loaded. For PowerPC code
this means native function pointers will be provided. Routine descriptor
operations are not required either in calling the plug-in nor for the plug-in
to invoke Illustrator callback functions.

Table 6-5: Adobe Illustrator code descriptor properties

Type Name Key Description

AI68kCodeDesc AI68KCodeProperty 0x6d36386bL
('m68k')

This descriptor indicates a 68K
code resource. The type for this
property is:

typedef struct AI68KCodeDesc
{

OSType resourceType;
int16 resourceID;

} AI68KCodeDesc;

Any resource type may be used,
but the convention for Illustrator
6.0 plug-ins is 'ARPI', number
16000

AICFMCodeDesc AIPowerPCCodeProperty 0x70777063L
('pwpc')

This descriptor indicates a Pow-
erPC code fragment in the data
fork of the plug-in file. The type
for this property is as follows:

typedef struct AICFMCodeDesc
{

long fContainerOffset;

long fContainerLength;

char fEntryName[1];

} AICFMCodeDesc;

Described in table 6-6.

Table 6-6: AIPowerPCCodeProperty properties

Type Field Description

long fContainerOffset Data fork offset to the code fragment start. This allows more
than one code fragment based plug-in per file.

long fContainerLength Length of the code fragment. If the fragment extends to the
end of the file or is the only fragment, the container length
may be 0.

char fEntryName Not currently implemented in Adobe Illustrator 6.0.

Pascal string used to lookup the address of the function to
call within the fragment. In order for the Code Fragment
Manager to find an entrypoint by name, that name must be
an exported symbol of the code fragment. If NULL, the
default entrypoint will be used. fEntryName allows a single
code fragment to contain more than one plug-in.

6. Adobe Illustrator PiPLs

Cross-Application Plug-in Development Resource Guide 43

Import and Export Properties

Import and export properties are used by plug-ins to declare their
interdependencies with other plug-ins. Plug-ins may depend on the existence
of another plug-in even if it doesn’t explicitly export callback functions.

For instance, one vendor’s plug-ins may expand upon the functionality of
another’s. This dependency can be expressed by declaring (exporting) a plug-
in’s existence. Such exported properties could include menu items, tools, or
filters.

Importing
Plug-ins access callback functions by first importing function suites. The
plug-in declares the suites and other functionality on which it depends using
an import property list.

Exporting
Plug-ins can extend the functionality of the API by exporting new function
suites. A plug-in must have at least one export property, which is often the
name of the plug-in.

The loading order of plug-ins becomes important when one plug-in depends
on a suite exported by another, as the exporting plug-in must be loaded first
to initialize function lists and other values. To ensure that the interdepencies
of plug-ins are handled correctly, plug-ins declare in advance the function
suites they import and export. Illustrator will use this information when
loading and executing plug-ins. The suite import and export information is
declared in the PiPL resource.

AIIEListDesc
typedef struct AIIEListDesc

{

long fLength;

CString fName; // padded to four bytes

long fVersion;

} AIIEListDesc;

Table 6-7: Adobe Illustrator import and export properties

Type Name Key Description

AIImportsList AIImportList 0x696D7074L
('impt')

This descriptor contains the list of depen-
dencies that a plug-in imports or exports:

typedef struct AIImportExportDesc
{

long fCount;
AIIEListsDesc fImpExp[1];

} AIImportExportDesc;

See table 6-8 and 6-9.

AIExportsList AIExportList 0x65787074L
('expt')

Table 6-8: AIImportExportDesc properties

Type Field Description

long fCount The number of suites imported by the plug-in.

long fImpExp Variable length list describing the suites needed by the plug-in.

6. Adobe Illustrator PiPLs

Cross-Application Plug-in Development Resource Guide 44

Table 6-9: AIIEListDesc properties

Type Field Description

long fLength The total length (including 4 bytes for this field) of the
AIIEListDesc record.

CString fName C-style string with the name of the suite to be imported or
exported. The usable names of suites are found in the API docu-
mentation and header files.

long fVersion The version of a suite to use. Supported versions are listed in the
API documentation.

6. Adobe Illustrator PiPLs

Cross-Application Plug-in Development Resource Guide 45

Dynamically Declared Properties

Illustrator also provides a mechanism for declaring properties in a more
dynamic fashion. If the 'impt' or 'expt' property, or both, do not exist, the
plug-in will be sent two messages requesting the properties:

kAISelectorAcquireProperty
kAISelectorReleaseProperty

Your plug-in should build the appropriate property information and return a
pointer to that information. Determine the message type in main():

FXErr main(char *selector, void *stuff)
{

if (strcmp(selector, kSelectorAIAcquireProperty) == 0)

error = AcquireProperty(stuff);

else if (strcmp(selector, kSelectorAIReleaseProperty) == 0)

error = ReleaseProperty(stuff);

else

// process any other messages

}

Next, call a routine to create or release the property structure. When
creating the PiPL in memory, use platform memory allocation routines or
declare the property internally as static data.

The data passed with these messages is:
typedef struct
{

AIPluginData d;
OSType vendorID; // same as PiPL definition
OSType propertyKey; // same as PiPL definition
long propertyID; // as always, 0
void *property; // return the property here
long refCon; // for plug-in’s use. Set on acquire,

// given back on release
Boolean cacheable; // most likely true

} AIPropertyMessage;

When the kAISelectorAcquireProperty message is received, the
vendorID and propertyKey fields define the requested property, either
'impt' or 'expt'. Field propertyID=0, as defined. Based on the request, the
plug-in must create the property in memory exactly as defined in the PiPL
description and return a pointer to this memory block in the property field.
If the information in the property data will not change, set
cacheable=TRUE. Cacheable properties may be stored by the host in a
startup preferences file.

When the kAISelectorReleaseProperty message is received, the plug-in
should free the memory allocated to create the property.

6. Adobe Illustrator PiPLs

Cross-Application Plug-in Development Resource Guide 46

Adobe Illustrator SDK information and samples

Working with PiPLs
The basic PiPL resource any fat plug-in will need is found in the file “Basic
PiPL.rsrc” in the “PiPL example” folder of the sample code on the Adobe
Illustrator SDK. You can add Import and Export property lists to this resource
or specify them dynamically using the method shown in most of the sample
code.

If you need to edit a PiPL resource, you will need to use a resource compiler
or the program Resorcerer by Mathemæsthetics, Inc. There is a Resorcerer
template in the file Basic PiPL.rsrc with the Adobe Illustrator SDK that
will make editing property list straightforward. ResEdit resource templates
cannot handle a resource as complex as a PiPL.

Sample PiPLs
The sample code on the Adobe Illustrator SDK provides examples of both
methods of using PiPLs. The folder “shell w/ PiPL resource” has a
resource based PiPL. The routines are provided in the sample code to create
the property data from a modifiable structure.

Cross-Application Plug-in Development Resource Guide 47

77. Adobe PageMaker

This chapter describes properties and useful resources of Adobe PageMaker
for creating plug-ins that work under multiple applications.

Table 7-1: Adobe PageMaker version and signature information

Description Value

Mac OS version 6.0

Mac OS release date 6/1/95

Windows version 6.0

Windows release date 8/1/95

Backward-compatibility targets Mac, Win 5.0, 5.0

Signature 'ALD6'

7. Adobe PageMaker

Cross-Application Plug-in Development Resource Guide 48

Adobe PageMaker and Adobe Photoshop

Host version support
Adobe PageMaker and the Photoshop Effects extension emulates the
Photoshop 3.0.5 Plug-in API. All of the 3.0.5 API calls and functions are
implemented, except PageMaker executes only 680x0 plug-in code for, and
does not support any callbacks related to Acquire, Export, or File Format
modules. Adobe PageMaker requires the Microsoft OLE extension.

Nomenclature
An Adobe PageMaker “Filter” is the same as Adobe Photoshop’s “File
Format.” Adobe PageMaker’s “Plugin” or “Effect” is the same as Adobe
Photoshop’s “Filter”.

Before version 6.0, Adobe PageMaker used the term “Addition” for what is
now called a “Plug-in”.

Plug-in execution
Plug-in execution is vastly different in Adobe PageMaker with the Photoshop
Effects extension then any other implementation. Photoshop Filter plug-ins
are executed in this order:

1. User selects “Photoshop Effects...”

2. Dialog appears with selected image’s name (“Flower.tif”), Name of
new image to create (“Flower1.tif”), and name of filter to use.

3. User selects file names and filter from pop-up menu. Clicks “OK”.

4. Original image is loaded.

5. Plug-in is called with entire image data.

6. Resulting filtered image is saved.

7. Resulting image is placed with same position and parameters as orig-
inal image, replacing all original references.

Note: Because PageMaker generates a new image every time a filter
is executed, it is important to give the user as much preview feedback
as possible while they are modifying the plug-in parameters. If you
don’t have a preview window in your plug-in dialog, you might want
to implement it to support PageMaker users.

Table 7-2: Adobe PageMaker emulating Adobe Photoshop host

Description Value

Signature '8BIM'

Host version support 3.0.5, 3.0.5

Required adaptor Photoshop Effects extension

Resource 'PiPL'

Supported module types Filter

Plug-in folder default Adobe PageMaker 6.0/RSRC/Plugins/Effects

Plug-in aliases Automatically resolved by PageMaker.

Plug-in load order Loads references, but not code until execution
request.

How to access the different plug-ins while using Adobe PageMaker:

Filter modules Element»Image»“Photoshop Effects...”

!!

Cross-Application Plug-in Development Resource Guide 49

88. Adobe PhotoDeluxe

This chapter describes properties and useful resources of Adobe PhotoDeluxe
for creating plug-ins that work under multiple applications.

Table 8-1: Adobe PhotoDeluxe version and signature information

Description Value

Mac OS version 1.0

Mac OS release date 1/1/96

Windows version None

Windows release date N/A

Backward-compatibility targets Mac, Win 3.0, N/A

Signature 'PHUT'

8. Adobe PhotoDeluxe

Cross-Application Plug-in Development Resource Guide 50

Adobe PhotoDeluxe and Adobe Photoshop

Host version support
Adobe PhotoDeluxe emulates the Photoshop 3.0.5 LE Plug-in API. All of the
3.0.5 API calls and functions are implemented, except Adobe PhotoDeluxe
only executes the 680x0 code of the plug-in, and does not support:

1. CMYK and Lab modes in PSDisplayPixels and PSSampleImage

2. CMYK, Lab, and XYZ ColorServices callbacks such as RGBtoCMYK and
CMYKtoRGB

3. The GetPathName() callback

4. The path properties numberOfPaths, pathName, pathContents,
targetPathIndex, workPathIndex, clippingPathIndex, and
caption

5. AGM and AGM memory host callbacks

6. GetDuotoneInfo and SetDuotoneInfo.

Table 8-2: Adobe PhotoDeluxe emulating Adobe Photoshop host

Description Value

Signature '8BIM'

Host version support 3.0.5 LE, 3.0.5 LE

Required adaptor N/A

Resource 'PiPL'

Supported module types Acquire, Export, Filter, Format

Plug-in folder default Adobe PhotoDeluxe/Plug-ins

Plug-in aliases Automatically resolved by PhotoDeluxe.

Plug-in load order Loads references, but not code until execution
request.

How to access the different plug-ins while using Adobe PhotoDeluxe:

Acquire modules File»Acquire

Export modules File»Export

Filter modules File»Long menus; click “On your own”; Effects.

At this time there is no API to add to the “Cool” or
other tabbed menus.

Format modules File»Export»“File formats...”

Cross-Application Plug-in Development Resource Guide 51

99. Adobe Photoshop

This chapter describes properties and useful resources of Adobe Photoshop
for creating plug-ins that work under multiple applications.

Host emulators
Table 9-2 is a list of known hosts that emulate the Adobe Photoshop plug-in
API. Refer to the individual chapters and SDKs of each application for
Implementation issues and emulation caveats.

Table 9-1: Adobe Photoshop version and signature information

Description Value

Mac OS version 4.0

Mac OS release date 11/18/96

Windows version 4.0

Windows release date 11/18/96

Backward-compatibility targets Mac, Win 2.5, 2.5

Signature '8BIM'

Table 9-2: Known host emulators and supported versions

Host Versions supported
(Mac, Win) Modules supported

Adobe After Effects 3.0, 3.0 Filter, Format, Parser

Adobe Illustrator 3.0.4 subset, N/A Filter, Format

Adobe PageMaker 3.0.5, 3.0.5 Filter

Adobe PhotoDeluxe 3.0.5 LE, 3.0.5 LE Acquire, Export, Filter, Format

Adobe Premiere 2.5, 3.0 Filter

Cross-Application Plug-in Development Resource Guide 52

1010. Adobe Photoshop PiMIs

PiMI (pronounced “pimmy”) resources have been superceded by PiPL
resources, but you may need to include a PiMI resource if your want your
plug–in module to work with older (pre–3.0) versions of Adobe Photoshop.
Adobe recommends that you also create a PiPL resource for your plug–in, as
this will give you greater control over its operation under 3.0.

If your plug–in module is designed to be used only with Photoshop 3.0 or
later, we recommend, for backward-compatibility, you create a PiMI
resource, and provide alternate code for the suites that are unavailable in
version 2.5.

Older PiMI based plug–in modules are still fully supported in Photoshop 3.0.
This is accomplished by converting the 'PiMI' resource into a 'PiML' resource
when the plug–in is first scanned. Since PiMLs are cached in Photoshop’s
preferences file, this conversion only happens once.

If you want your plug–in to work with versions of Photoshop prior to 3.0,
you must create a 'PiMI' resource.

A PiMI resource is a fixed format structure which originally contained only a
version number. With the evolution of Photoshop’s plug–in interface, this
structure expanded to include other information. The addition of multiple
plug–in types resulted in the PiMI becoming a variant record with generic
data at the beginning and a type specific data at the end. Further plug–in
interface evolution required more complex metadata, such as an array of
allowable file types for file format plug–ins.The combination of variant and
variable sized fields in the 'PiMI' made writing resource templates for them
very difficult. Requirements for new plug–in metadata in Photoshop 3.0
introduced further complexities. The more general and flexible 'PiML'
mechanism was designed to address these issues.

The PiMI resource consists of two pieces: general information applicable to
all (or most) plug–in types followed by type specific info. Since the
information proceeds serially, however, all fields must be filled in through
and including the last field supplied. Your plug–in should either just include
the version number information, or it should include all of the information
documented here.

typedef struct PlugInInfo
{

short version;

short subVersion

short priority;

short generalInfoSize;

short typeInfoSize;

short supportsMode;

OSType requireHost;

} PlugInInfo;

10. Adobe Photoshop PiMIs

Cross-Application Plug-in Development Resource Guide 53

Table 10-1: Adobe Photoshop PlugInInfo (PiMI) structure

Type Field Description

short version Major version number for the interface used by the plug–in.
Required.

short subVersion Minor version number for the interface used by the plug–in.
Required.

short priority The priority of this plug–in when it loads. This is only used for
extension modules.

short generalInfoSize The size of the general plug–in information.

short typeInfoSize The size of the type–specific plug–in information. This infor-
mation follows requiredHost. See the SDK for type specifics.

short supportsMode A bitmap describing the image modes supported by the plug–
in. This field applies to Export, Filter, and File Format plug–
ins. If not present, Photoshop assumes all image modes. This
field is one of the ways Photoshop decides whether to dim
plug–ins in menus.

Since not all plug–in hosts may respect this field, your plug–in
module should still check that it can handle the image mode
it has been requested to process. The bits in the bitmap corre-
spond to the plugInMode constants in PIGeneral.h (i.e. bit
0 corresponds to bitmaps, bit 1 to grayscale, etc.).

short requireHost If your plug–in requires a particular plug–in host, you should
specify the signature for that host here. If you do not require
a particular plug–in host, you should fill this field with spaces.

Photoshop will not load plug–in modules which require a
plug–in host other than Photoshop’s '8BIM' signature. You
should not count on other applications that support the Pho-
toshop plug–in architecture to behave in a similar fashion.

Cross-Application Plug-in Development Resource Guide 54

1111. Adobe Photoshop PiPLs

A Plug–In Property List, called a 'PiPL' (pronounced “pipple”) is a flexible,
extensible data structure for representing a plug–in module’s metadata.

PiPLs contain all the information Photoshop needs to identify and load
plug–in modules, as well as flags and other static properties that control the
operation of each plug–in. Your plug–in module should contain one or more
'PiPL' structures.

Plug–in Property Lists were introduced with version 3.0 of Adobe Photoshop.
They replace the older Plug–in Module Information structure, or 'PiMI'. PiMI
resources were used with versions of Photoshop prior to 3.0, and are
discussed in more detail in the previous chapter.

Property structures and property lists
Plug–in property structures (or properties) are the basic units of information
stored in a property list. Properties are variable length data structures, which
are uniquely identified by a vendor code, property key, and ID number.
The valid properties and formal grammar are documented later in this
chapter.

Creating PiPL resources
Under the Mac OS, PiPLs are stored as Macintosh resources. Under Windows,
PiPLs are stored as Windows resources.

On the Macintosh, you can create and edit PiPL resources with a text editor
and the Rez compiler, or you can use a graphical resource editor like
Resorcerer. ResEdit cannot edit PiPL resources. If you are unfamiliar with the
format of Rez source code, refer to the appropriate Apple documentation.
The Photoshop SDK includes a Macintosh Rez file, PIGeneral.r, which
provides a complete definition of the PiPL property types.

The Windows version of the Photoshop SDK also includes a “PiPL Parser”
utility, CNVTPIPL.EXE, to transform a Macintosh “.r” source file into a
Windows “.rc” resource file.

If you are developing for both the Macintosh and Windows platforms, you
can easily convert your Macintosh PiPL resources into Windows’ custom
PiPL format using CNVTPIPL.EXE. This enables you to keep just one copy of
your PiPL information, and saves you the headache of converting PiPLs by
hand.

Even if you are developing a plug–in module only for Windows, you are
strongly encouraged to use the Macintosh Rez language to create the PiPLs,
and then use CNVTPIPL.EXE to convert them. It is much easier to create the
PiPLs this way since CNVTPIPL.EXE handles padding and byte–ordering
issues for you automatically. If you use a Windows resource editor, you will
have to remember to byte–swap fields where necessary.

Creating or modifying PiPL resources in Windows
When the Macintosh development environment is not available for creating
the PiPL resource, or you only want to make a minor change while still in
your Windows development environment, follow these steps:

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 55

1. Open the resource rez file for the plug-in, plugInName.r (such as
dissolve.r)

2. Make any desired PiPL changes to the resource file.

3. Save the file.

4. Rebuild the project.

The makefile builds the resources for your plug-in in this order:

1. PiPL.TMP is generated by feeding plugInName.r through the C Pre-
Processor.

2. PiPL.RSC is then generated by feeding PiPL.TMP through CNVT-
PIPL.EXE.

3. plugInName.rc is created, which includes PiPL.RSC.

Note: Editing PiPL.RSC, PiPL.TMP or plugInName.rc only modifies
your PiPL temporarily, and will not create a valid PiPL. Your plug-in
will compile, but Photoshop will not recognize it. Only edit your PiPL
resource via the plugInName.r file.

Loading PiPL resources
When Photoshop launches, it scans all plug–in files for 'PiPL' resources.
Historically, each type of plug–in had its own file type.

File types are only a matter of convention for 'PiPL' based plug–in modules.
All known plug-in file types are searched for 'PiPL' resources and for those
that are found, the information contained therein is used to determine the
type of plug–in, code location, etc.

If no 'PiPL' resources are found in a plug–in file, the 'PiMI' search algorithm
is used. This allows you to place both 'PiPL' and 'PiMI' resources in a
plug–in module to make it compatible with both version 2.5 and 3.0.x.

Plug–in property lists
The plug–in property list structure has a version number and a count
followed by one or more property structures.

typedef struct PIPropertyList
{

int32 version;

int32 count;

PIProperty properties[1];

} PIPropertyList;

Plug–in properties
Each property has a vendor code, a key, an ID, a length field.

typedef struct PIProperty
{

Table 11-1: PIPropertyList structure

Type Field Description

int32 version Current version is 0.

int32 count Number of properties in the 'PiPL'. 0=no properties.

PIProperty properties A variable length array of property data structures.

!!

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 56

OSType vendorID;

OSType propertyKey;

int32 propertyID;

int32 propertyLength;

char propertyData [1];

/* Implicitly aligned to multiple of 4 bytes. */

} PIProperty;

Table 11-2: PIProperty structure

Type Field Description

OSType vendorID The vendor defining this property type. This allows other
vendors to define their own properties in a way that does
not conflict with either Adobe or other vendors. It is recom-
mended that a registered application creator code be used
for the vendorID to ensure uniqueness. All Photoshop prop-
erties use the vendorID '8BIM'.

OSType propertyKey Property type, detailed in table 11-3.

int32 propertyID =0. Used to store more than one property of a given type.
Reserved for future use.

int32 propertyLength Length of propertyData. Does not include any padding
bytes to achieve four byte alignment. May be zero.

variable propertyData Variable length field containing contents of this property.
Any values may be contained.

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 57

General properties

These properties are common to all types of plug–in modules. The names of
the properties (such as “PIKindProperty”) are the same as the #define
names for the corresponding property keys.

Table 11-3: Adobe Photoshop general property keys

Type Name Key Description

OStype PIKindProperty 0x6b696e64L
('kind')

Type or kind of plug-in.
'ARPI'=Adobe Illustrator
'8BXM'=Accelerator extension
'8BAM'=Import module
'8BEM'=Export module
'8BFM'=Filter module
'8BIF'=Format module
'8BSM'=Selection module
'8BYM'=Parser module

int32 PIVersionProperty 0x76657273L
('vers')

Major and minor version number indi-
cating which revision of the plug–in
interface this plug–in was written for.
The major version number indicates
incompatible changes while the minor
version number indicates incremental
enhancements. The major version num-
ber is encoded in the most significant 16
bits of the 32 bit version number, the
minor version number is encoded in the
least significant 16 bits.

There are separate version numbers for
each kind of plug–in. The current ver-
sion for a given kind of plug–in is
defined by a preprocessor macro in the
header file defining the interface for
that plug–in type.

int16 PIPriorityProperty 0x70727479L
('prty')

Plug-in load order. Also used to control
the order in which items with the same
name show up in menus.

Lower numbers (including negative
ones) load first. If NULL, the default is
zero.

FlagSet PIImageModesProperty 0x6d6f6465L
('mode')

Which image modes the plug–in sup-
ports. Adobe Photoshop, has 11 modes:
bitmap, grayscale, indexed, RGB,
CMYK, HSL, HSB, multi–channel, duo-
tone, Lab, gray 16, and RGB 48.

This property determines whether your
plug–in will be active (black) or inactive
(gray) in Photoshop’s menus based on
the current document’s image mode.

CString EnableInfo 0x656E626CL
('enbl')

String of modula-like expressions that
determine whether plug-in is enabled in
menu. See below.

OSType PIRequiredHostProperty 0x686f7374L
('host')

Creator code of required host, such as
'8BIM' for Adobe Photoshop.

PString PICategoryProperty 0x63617467L
('catg')

In the Filter menu, what sub–menu to
list this plug–in.

PString PINameProperty 0x6e616d65L
('name')

Plug-in menu name for module in
PICategoryProperty sub-menu.

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 58

EnableInfo
EnableInfo is a string of expressions that, upon evaluation, must all be true
for the plug-in to be enabled in the menu.

Table 11-4: EnableInfo grammar

Type Description

booleanExpression conjunction {“||” conjunction}

conjunction relation {“&&” relation}

relation equality {relationOperator equality}

equality simpleExpression {equalityOperator simpleExpression}

simpleExpression term {addOperator term}

term factor {mulOperator factor}

factor integer | intrinsic | ident | “(“ booleanExpression “)” |
“(“ simpleExpression “)” | “+” factor | “–” factor | “!”
factor

integer digit {digit}

intrinsic limitFunction | dimFunction | namedParameterFunction

limitFunction (“min” | “max”) “(” simpleExpression
“,” simpleExpression {“,” simpleExpression} “)”

dimFunction “dim” “(”simpleExpression “,” simpleExpression “)”

ident (alpha | “_”) {alpha | digit | “_”}

mulOperator “*” | “/”

addOperator “+” | “–”

equalityOperator “==” | “!=”

relationOperator “<” | “<=” | “>=” | “>”

inFunction “in” “(” simpleExpression {“,” simpleExpression} “)”

Table 11-5: EnableInfo constants

Value Description

true Boolean true

false Boolean false

BitmapMode Bitmap mode

GrayScaleMode Grayscale mode

IndexedColorMode Indexed color mode

RGBMode RGB color mode

CMYKMode CMYK color mode

HSLMode HSL color mode

HSBMode HSB color mode

MultichannelMode Multichannel mode

DuotoneMode Duotone mode

LabMode Lab color mode

Gray16Mode Grayscale mode, 16 bits per channel

RGB48Mode RGB color mode, 16 bits per channel

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 59

Result of undefined values
The result of any arithmetic operation where at least one of the operands is
undefined, or an undefined variable, results in FALSE. The result of a
compare (see relationOperator) where at least one of the operands is
undefined reults in FALSE.

Boolean values are treated as in C/C++ where non-zero is TRUE and zero is
FALSE with the exception that an undefined value is also false.

inFunction
inFunction returns true if the first parameter is equal to at least one of
the following parameters. A typical use might be to see if the image mode is
RGB, CMYK, or Lab:

in(PSHOP_ImageMode, RGBMode, CMYKMode, LabMode)

Table 11-6: EnableInfo variables

Variable Description

PSHOP_ImageMode Image mode

PSHOP_ImageDepth Image depth

PSHOP_HasLayerMask Boolean for presence of layer mask

PSHOP_HasSelectionMask Boolean for presence of selection mask

PSHOP_HasTransparencyMask Boolean for presence of transparency mask

PSHOP_NumTargetChannels Number of target channels

PSHOP_NumTrueChannels Number of image channels

PSHOP_IsTargetComposite Boolean for whether flattened

PSHOP_ImageWidth Width of the image

PSHOP_ImageHeight Height of the image.

Table 11-7: Operator precendence

Variable Description

|| Or

&& And

+ - Addition or subtraction

* / Multiple or divide

< <= >= > Less than, less than or equal to, greater than or equal
to, greater than

== != Equals, does not equal

(..) in() max() min() unary: + - ! Functions, increment, decrement, not

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 60

Code descriptor properties

Code descriptors tell Photoshop the type and location of a plug–in’s code.
More than one code descriptor may be included to build a “fat” plug–in
which will run on different types of machines. Photoshop will select the best
performing option. Photoshop makes sure that the callback structure is filled
in with appropriate functions for the type of code that is loaded. So for
PowerPC code, native function pointers will be provided and routine
descriptor operations are not required either in calling the plug–in or for the
plug–in to invoke Photoshop callback functions.

Note: In Windows, the CNVTPIPL.EXE utility only recognizes the
“PIWin32X86CodeProperty” property. It ignores all Mac–specific
properties described in this section.

Table 11-8: Adobe Photoshop code descriptor properties

Type Name Key

PI68kCodeDesc PI68KCodeProperty 0x6d36386bL ('m68k')

This descriptor indicates a 68K code resource. The type for this property is:

typedef struct PI68KCodeDesc
{

OSType resourceType;
int16 resourceID;

} PI68KCodeDesc;

Any resource type may be used, but types of PIKindProperty from table 11-3 are
strongly recommended.

PI68kCodeDesc PI68KFPUCodeProperty 0x36386670L ('68fp')

This descriptor is just like a PI68KCodeDesc except it will only be used on Macintosh
machines that are equipped with FPU hardware. This allows vendors to easily ship
plug–ins that take advantage of FPU hardware but still run on non–FPU Macs.

PICFMCodeDesc PIPowerPCCodeProperty 0x70777063L ('pwpc')

This descriptor indicates a PowerPC code fragment in the data fork of the plug-in file. The
type for this property is as follows:

typedef struct PICFMCodeDesc
{

long fContainerOffset;

long fContainerLength;

char fEntryName[1];

} PICFMCodeDesc;

Described in table 11-9.

PIWin32X86CodeDesc PIWin32X86CodeProperty 0x77783836L ('wx86')

This code descriptor is used for 32 bit Windows DLLs, and contains the DLL’s entrypoint
name.

typedef struct PIWin32X86CodeDesc
{

char fEntryName[1];

} PIWin32X86CodeDesc;

The NULL-terminated string may need to be padded with additional NULLs to satisfy the
4–byte alignment requirement.

!!

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 61

Table 11-9: PICFMCodeDesc structure

Type Field Description

long fContainerOffset Data fork offset to the code fragment start. This
allows more than one code fragment based plug-in per
file.

long fContainerLength Length of the code fragment. If the fragment extends
to the end of the file or is the only fragment, the con-
tainer length may be 0.

Pstring fEntryName Pascal string used to lookup the address of the func-
tion to call within the fragment. In order for the Code
Fragment Manager to find an entrypoint by name,
that name must be an exported symbol of the code
fragment. If NULL, the default entrypoint will be used.
fEntryName allows a single code fragment to contain
more than one plug-in.

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 62

Color Picker–specific properties

All color pickers must have a unique ID so that they may be accessed
correctly by the host. Menu entries are not sufficient to differentiate color
pickers.

Note: If a color picker does not have a unique ID, or two loaded color
pickers have the same ID, then the first color picker in will always be
the one executed, despite what appears in the pop-up menu.

Table 11-10: Adobe Photoshop color picker-specific properties

Type Name Key

pstring PickerID 0x6873746DL ('pnme')

This property is a unique string (UUID or your own ™/© string) that differentiates one
color picker from another.

!!

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 63

Export–specific properties

This property is only applicable to Export plug–in modules.

Table 11-11: Adobe Photoshop export-specific properties

Type Name Key Description

FlagSet PIExpFlagsProperty 0x65787066L
('expf')

This property indicates that the plug–in
can see transparency data. To indicate
this, set
PIExpSupportsTransparency.

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 64

Filter–specific properties

These properties are only applicable to Filter plug–in modules.

FilterCaseInfo
Each of the 7 elements of the array contains a 4–byte FilterCaseInfo:

typedef struct FilterCaseInfo
{

char inputHandling;

char outputHandling;

char flags1;

char flags2;

} FilterCaseInfo;

If the editable transparency cases are unsupported, then Photoshop will try
the corresponding protected transparency cases. This governs whether the
filter will be expected to filter the transparency data with the color data.

If the protected transparency case without a selection is disabled, the layer
data is treated as a floating selection. Transparency data will be presented

Table 11-12: Adobe Photoshop filter-specific properties

Type Name Key

7 * 4-bytes PIFilterCaseInfoProperty 0x66696369L ('fici')

The key feature of Photoshop 3.0 is support for dynamically composited layers of image
data.

A layer consists of color and transparency information for each pixel it contains. Previous
versions of Photoshop did not have a transparency component. Completely transparent
pixels have an undefined color. Filters will likely affect transparency data as well as color
data. This is especially true for filters which produce spatial distortions.

Photoshop 3.0 offers flexibility in how transparency data is presented to filters. The filter
case info property controls the filtering process and presentation of data to the plug–in.
This property provides information to Photoshop about what image data cases the
plug–in supports. Photoshop then compares the current filtering situation to the sup-
ported cases and chooses the best fitting case. The image data is then presented in that
case. If none of the supported cases are usable, the filter will be disabled.

The case properties are an array of seven four byte entries, one for each case, detailed in
table 11-13.

Table 11-13: Filter cases

Item Name Description

1 filterCaseFlatImageNoSelection This is a background layer or a flat image.
There is no transparency data or selec-
tion.

2 filterCaseFlatImageWithSelection No transparency data, but a selection may
be present. The selection will be pre-
sented as mask data.

3 filterCaseFloatingSelection Image data with an accompanying mask.

4 filterCaseEditableTransparencyNoSelection Layer with transparency editing enabled
and no selection.

5 filterCaseEditableTransparencyWithSelection Layer with transparency editing enabled
and a selection.

6 filterCaseProtectedTransparencyNoSelection Layer with transparency editing disabled
and no selection.

7 filterCaseProtectedTransparencyWithSelection Layer with transparency editing disabled
and a selection.

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 65

via the mask portion of the interface rather than with the input data.

inputHandling & outputHandling
The inputHandling and outputHandling fields specify the pre–processing and
post–processing actions on the image data respectively.

Table 11-14: FilterCaseInfo handling modes

Handling mode Description

0=inCantFilter = outCantFilter indicates that this case is not supported by the
plug–in filter

1=inStraightData = outStraightData indicates that the plug–in filter does not expect the
plug–in host to do anything to the image data.

The next three modes are matting cases, which are useful when performing distortions and blurs.

You can matte the data, process it, and then dematte to remove the added color.

For these cases, the matting is defined as follows:

mattedValue = ((unmattedValue * transparency) + 128) / 255 +
 ((matConstant * (255 - transparency)) + 128) / 255

Dematting is defined as follows:

unmattedValue = ((mattedValue - matConstant) ./ transparency) + matConstant

with the ./ operator defined as an 8 bit fixed–point divide and the result value=0...255.

2=inBlackMat = outBlackMat For input, matte the image data with black=0 values
based on the transparency.
For output, dematte the image data using black
(=0) values.

3=inGrayMat = outGrayMat Matte the image data with gray (=128) values based
on the transparency on input. Dematte the image
data using gray values on output.

4=inWhiteMat = outWhiteMat Matte the image data with white (=255) values
based on the transparency on input. Dematte the
image data using white values on output.

Input-only related modes

5=inDefringe Defringe transparent areas filling with the nearest
defined pixels using taxicab distance. Note that this
only applies to fully transparent pixels.

6=inBlackZap Set color component of totally transparent pixels to
black.

7=inGrayZap Set color component of totally transparent pixels to
gray.

8=inWhiteZap Set color component of totally transparent pixels to
white.

10=inBackgroundZap Set color component of totally transparent pixels to
the current background color.

11=inForegroundZap Set color component of totally transparent pixels to
the current foreground color.

Output-only related modes

9=outFillMask This mode results in the transparency mask auto-
matically being filled with full opacity in the area
affected by the filter. This is only valid for the edit-
able transparency cases. This option is provided to
make it easy to write a plug–in similar to Photo-
shop’s Clouds plug–in, which fills an area with a
value.

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 66

Note: This field is not a FlagSet. The first bit,
PIFilterDontCopyToDestinationBit, is in the least–significant bit
of the flag byte.

flags2
The flags2 field of the FilterCaseInfo structure is reserved, and should be
zero.

Table 11-15: FilterCaseInfo flags1 parameters

Field Values

0=PIFilterDontCopyToDestinationBit 0=copySourceToDestination
1=doNotCopySourceToDestination

Normally source data is copied to the destination before filtering. This degrades perfor-
mance for filters which write all the output pixels. Setting this bit inhibits copying.

1=PIFilterWorksWithBlankDataBit 0=doesNotWorkWithBlankData
1=worksWithBlankData

Determines whether the filter will work on “blank” areas that are completely transparent.
If not, an error message will be given when the filter is invoked on a blank area. This is
only valid for the editable transparency case because that is the only case where you could
create opacity—in the protected transparency case, you would be left with what you
started with: completely blank data.

2=PIFilterFiltersLayerMaskBit 0=doesNotFilterLayerMasks
1=filtersLayerMasks

In cases where transparency is editable, this flag determines if Layer Masks are filtered.
(See the “Add Layer Mask” item in the Layers palette menu to create a layer mask.) Set-
ting this bit adds the layer mask to the set of target channels if: transparency for the layer
is editable (i.e., this is one of the editable transparency cases), the bit is set, and the layer
mask is specified as being positioned relative to the layer rather than the image in Layer
Mask Options. The distinction based on position is based on the assumption that layer rel-
ative masks are distorted with the layer; image relative masks are independent of the
layer.

3=PIFilterWritesOutsideSelectionBit 0=doNotWriteOutsideSelection
1=writeOutsideSelection

In the image with selection and layer with selection cases, does the filter want to write
beyond the confines of the selection? (This is generally rude but in some cases it’s better
than the alternatives. If you use this, be sure to support layer transparency data as an
alternate mask.)

!!

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 67

Format–specific properties

These properties are only applicable to format plug–in modules.

Table 11-16: Adobe Photoshop format-specific properties

Type Name Key Description

TypeCreator-
Pair

PIFmtFileTypeProperty 0x666d5443L
('fmTC')

Default type and creator code
used for files newly created with
this format plug–in.

Under Windows, files don’t store
TypeCreator information,
except internally, so this property
is not required; they are always
interpreted as of type 'BINA' and
creator 'mdos'.

All the info regarding what files
can be read and written is
obtained from the
PIReadExtProperty or the
PIFilteredExtProperty.

Under Windows, PiMI extensions
are converted to
PIReadExtPropertys, so use of
PIFilteredExtProperty
requires additional coding if you
are porting a 16–bit plug–in
format module to 32–bit.

Array of
TypeCreator-
Pair

PIReadTypesProperty 0x52645479L
('RdTy')

List of type and creator pairs
which the format plug–in can
read. Specifying a value of four
spaces (0x20202020L) matches
any type or creator.

Array of
TypeCreator-
Pair

PIFilteredTypesProperty 0x66667454L
('fftT')

List of type and creator pairs for
which the file format plug–in
should be called to determine if
the file can be read. Specifying a
value of four spaces
(0x20202020L) matches any type
or creator.

Array of
OSTypes

PIReadExtProperty 0x52644578L
('RdEx')

List of extensions which the for-
mat plug–in can read. The exten-
sion is stored in the first three
characters of the OSType. The
fourth character must be a space.

Array of
OSTypes

PIFilteredExtProperty 0x66667445L
('fftE')

List of extensions for which the
file format plug–in should be
called to determine if the file can
be read.

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 68

FlagSet PIFmtFlagsProperty 0x666d7466L
('fmtf')

This property contains a set of
flags which control the operation
of file format plug–ins. The
default value for any flag is
FALSE. See table 11-17.

Point PIFmtMaxSizeProperty 0x6d78737aL
('mxsz')

The maximum number of rows
and columns that can be in an
image saved in this format. Pho-
toshop will use this field to
screen out ineligible formats.

Array of
int16s

PIFmtMaxChannelsProperty 0x6d786368L
('mxch')

An array of counts of the maxi-
mum number of channels which
can/will be saved for a given
image mode.

This array is indexed by the
plug–in mode constants. For
example, if your format plug–in
supports a single alpha channel
in RGB mode, you should set
maxChannels
[plugInModeRGBColor]=4.

A plug–in may still be asked to
save more channels than it
reports it can support. This field
exists primarily so that
Photoshop can warn the user
that alpha channels will be
discarded.

Table 11-17: PIFmtFlagsProperty parameters

Field Description

0=PIFmtReadsAllTypesFlag Obsolete.

1=PIFmtSavesImageResourcesFlag Resources besides image data, such as printing
information, pen tool paths, etc.. are known as
image resources. The plug–in format has the
option of taking responsibility for these resources
by reading and writing a block of data containing
the image resources. If FALSE, Photoshop will add
the image resources to the file’s Mac OS resource
fork but this will not be portable to other plat-
forms.

2=PIFmtCanReadFlag =TRUE if the file format can read files.

3=PIFmtCanWriteFlag =TRUE if the file format can write files.

4=PIFmtCanWriteIfReadFlag Whether plug–in can write the file if the plug–in
originally read the file.

Table 11-16: Adobe Photoshop format-specific properties (Continued)

Type Name Key Description

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 69

Scripting–specific properties

All scripting-aware plug-ins must have an 'aete' dictionary resource.
aeteResNum should be the resource number for that dictionary. Multiple
dictionaries are usually provided when a file contains more than one plug-in.

Scripting-aware Filters, Selection, and Color Picker modules must provide
both a classID and an eventID. All other types of plug-ins must provide a
classID and pass typeNull='null' for the eventID.

Note: If a non-filter does not pass typeNull for eventID, then errors
will occur, as the existence of an eventID triggers the host to parse
the dictionary as if it was for a Filter, Selection, or Color Picker
module.

Ignoring AppleScript
If you don’t care about AppleScript compatibility, supplying the uniqueID
string automatically makes your plug-in’s scripting scope to only the host.
Any external AppleScript or similar calls to your plug-in will be ignored.

Table 11-18: Adobe Photoshop scripting-specific properties

Type Name Key

80-bytes + string HasTerminology 0x6873746DL ('hstm')

This property indicates whether an 'aete' resource is present and whether your plug-in is
scripting-aware for Photoshop and AppleScript.

typedef struct HasTerminology

{

int32 classID; // classID from 'aete'

int32 eventID; // eventID from 'aete' or NULL if none

int16 aeteResNum; // number of 'aete' resource

CString uniqueID; // unique ID string (UUID or your own ™/©). If present,

ignores AppleScript and keeps local to Photoshop.
} HasTerminology;

!!

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 70

Adobe Photoshop PiPL Syntax

This information is included as reference material. If you use the example
source code and the documentation included on the Photoshop SDK, you
probably won’t need to worry about the specifics of the PiPL syntax.

Miscellaneous definitions

<OSType>

<int16>

<int32>

<epsilon> :=

Beginning of real grammar.

<PiPL spec> := <resource header> <resource body>

<resource header> :=

"resource" "'PiPL'" "("

 <resourceID> <optional resource name> <optional attribute list>

")"

<optional name> :=

<epsilon> |

"," <string>

<optional attribute list> :=

<epsilon> |

"," <attribute> <attribute list tail>

<attribute list tail> :=

<epsilon> |

 "|" <attribute> <attribute list tail>

<resource body> :=

"{" "{"

<property list>

"}" "}"

<property list tail> :=

<epsilon> |

"," <property> <property list tail>

<property list> :=

<epsilon>

| <property> <property list tail>

<property> :=

<kind property> |

<version property> |

<priority property> |

<required host property> |

<name property> |

<category property> |

<68k code descriptor property> |

<powerpc code descriptor property> |

<win32 x86 code property> |

<supported modes property> |

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 71

<filter case info property> |

<format file type property> |

<read types property> |

<write types property> |

<filtered types property> |

<read extensions property> |

<write extensions property> |

<filtered extensions property> |

<format flags property> |

<format maximum size property> |

<format maximum channels property> |

<parsable types property> |

<parsable extensions property> |

<filtered parsable types property> |

<filtered parsable extensions property> |

<parsable clipboard types property>

<kind property> := "Kind" "{" <kind ID> "}"

<kind ID> := <OSType> |

"Filter" |

"Parser" |

"ImageFormat" |

"Extension" |

"Acquire" |

"Export"

<version property> := "Version" "{" <version clause> "}"

<version clause> := <int32> |

"(" <wired version ID high> "<<" "16" ")" "|"

"(" <wired version ID low> ")" |

<wired version ID>

<wired version ID> := "FilterVersion" |

"ParserVersion" |

"ImageFormatVersion" |

"ExtensionVersion" |

"AcquireVersion" |

"ExportVersion"

<wired version ID high> := "latestFilterVersion" |

"latestParserVersion" |

"latestImageFormatVersion" |

"latestExtensionVersion" |

"latestAcquireVersion" |

"latestExportVersion"

<wired version ID high> := "latestFilterSubVersion" |

"latestParserSubVersion" |

"latestImageFormatSubVersion" |

"latestExtensionSubVersion" |

"latestAcquireSubVersion" |

"latestExportSubVersion"

<priority property> := "Priority" "{" <int16> "}"

<required host property> := "Host" "{" <OSType> "}"

<name property> := "Name" "{" <string> "}"

<category property> := "Category" "{" <string> "}"

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 72

<68k code descriptor property> := "Code68k" "{" <OSType>, <int16> "}"

<powerpc code descriptor property> := "CodePowerPC" "{"

<int32>, <int32> <optional name> "}"

<win32 x86 code property> := "CodeWin32X86" "{" <string> "}

<bitmap support> := "noBitmap" | "doesSupportBitmap"

<grayscale support> := "noGrayScale" | "doesSupportGrayScale"

<indexed support> := "noIndexedColor" | "doesSupportIndexedColor"

<RGB support> := "noRGBColor" | "doesSupportRGBColor"

<CMYK support> := "noCMYKColor" | "doesSupportCMYKColor"

<HSL support> := "noHSLColor" | "doesSupportHSLColor"

<HSB support> := "noHSBColor" | "doesSupportHSBColor"

<multichannel support> := "noMultichannel" | "doesSupportMultichannel"

<duotone support> := "noDuotone" | "doesSupportDuotone"

<LAB support> := "noLABColor" | "doesSupportLABColor"

<supported modes property> := "SupportedModes"

"{"

<bitmap support> ","

<grayscale support> ","

<indexed support> ","

<RGB support> ","

<CMYK support> ","

<HSL support> ","

<HSB support> ","

<multichannel support> ","

<duotone support> ","

<LAB support>

"}"

<filter case info property> := "FilterCaseInfo"

"{"

"{"

<filter info case> # filterCaseFlatImageNoSelection

<filter info case> # filterCaseFlatImageWithSelection

<filter info case> # filterCaseFloatingSelection

<filter info case> # filterCaseEditableTransparencyNoSelection

<filter info case> # filterCaseEditableTransparencyWithSelection

<filter info case> # filterCaseProtectedTransparencyNoSelection

<filter info case> # filterCaseProtectedTransparencyWithSelection

"}"

"}"

<filter info case> :=

<input matting> "," <output matting> ","

<layer mask flag> "," <blank data flag> "," <copy source flag>

<input matting> :=

"inCantFilter" |

"inStraightData" |

"inBlackMat" |

"inGrayMat" |

"inWhiteMat" |

"inDefringe" |

"inBlackZap" |

"inGrayZap" |

"inWhiteZap" |

"inBackgroundZap" |

"inForegroundZap"

<ouput matting> :=

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 73

"outCantFilter" |

"outStraightData" |

"outBlackMat" |

"outGrayMat" |

"outWhiteMat" |

"outFillMask"

<layer mask flag> := "doesNotFilterLayerMasks" | "filtersLayerMasks"

<blank data flag> := "doesNotWorkWithBlankData" | "worksWithBlankData"

<copy source flag> := "copySourceToDestination" |

"doNotCopySourceToDestination"

<type creator pair> :=

<OSType> "," <OSType>

<format file type property> :=

"{"

<type creator pair>

"}"

<type creator pair list tail> :=

<epsilon> |

"," "{" <type creator pair> "}" <type creator pair list tail>

<type creator pair list> :=

<epsilon> |

"{" <type creator pair> "}" <type creator pair list tail>

<read types property> :=

"{"

<type creator pair list>

"}"

<write types property> :=

"{"

<type creator pair list>

"}"

<filtered types property> :=

"{"

<type creator pair list>

"}"

<ostype list tail> :=

<epsilon> |

"," "{" <OSType> "}" <ostype list tail>

<ostype list> :=

<epsilon> |

"{" <OSType> "}" <ostype list tail>

<read extensions property> :=

"{"

<ostype list>

"}"

<write extensions property> :=

"{"

<ostype list>

"}"

<filtered extensions property> :=

"{"

11. Adobe Photoshop PiPLs

Cross-Application Plug-in Development Resource Guide 74

<ostype list>

"}"

<saves image resources flag> :=

"fmtDoesNotSaveImageResources" | "fmtSavesImageResources"

<can read flag> :=

"fmtCannotRead" | "fmtCanRead"

<can write flag> :=

"fmtCannotWrite" | "fmtCanWrite"

<write if read flag> :=

"fmtWritesAll" | "fmtCanWriteIfRead"

<format flags property> :=

"{"

<saves image resources flag> ","

<can read flag> ","

<can write flag> ","

<write if read flag>

"}"

<format maximum size property> :=

"{"

<int16>, <int16>

"}"

<format maximum channels property> :=

<parsable types property> :=

"{"

<type creator pair list>

"}"

<parsable extensions property> :=

"{"

<ostype list>

"}"

<filtered parsable types property> :=

"{"

<type creator pair list>

"}"

<filtered parsable extensions property> :=

"{"

<ostype list>

"}"

<parsable clipboard types property> :=

"{"

<ostype list>

"}"

Cross-Application Plug-in Development Resource Guide 75

1212. Adobe Premiere

This chapter describes properties and useful resources of Adobe Premiere for
creating plug-ins that work under multiple applications.

Table 12-1: Adobe Premiere version and signature information

Description Value

Mac OS version 4.2

Mac OS release date 8/1/95

Windows version 4.0

Windows release date 5/1/95

Backward-compatibility targets Mac, Win 4.0, 4.0

Signature 'PrMr'

12. Adobe Premiere

Cross-Application Plug-in Development Resource Guide 76

Adobe Premiere and Adobe Photoshop

Host version support
Adobe Premiere emulates the Adobe Photoshop 2.5 Plug-in API. All of the
2.5 API calls and functions are implemented, except:

1. Any callbacks related to Acquire, Export or Format modules

2. Any 3.0+ callback services or suites

3. If your plug-in is 24-bit pixels (RGB) vs. 32-bit (RGB+alpha), renumber
your PiMI major version number to ≤ 3, rather than ≥ 4.

Note: Because hosts like Adobe Premiere implement a version of the
Adobe Photoshop plug-in API that is earlier then the current version,
it is very important you check for validity and existence of suite
versions and their callbacks before you use them.

Creating dynamic resources
Adobe Premiere allows Adobe Photoshop plug-ins to be controlled over
time. This is achieved through the addition of a simple resource called an
'FltD'. FltD resources are described in detail in the Adobe Premiere SDK.

Table 12-2: Adobe Premiere emulating Photoshop host

Description Value

Signature '8BIM'

Host version support Mac, Win 2.5, 3.0

Required adaptor N/A

Resource 'PiMI'

Supported module types Filter

Plug-in folder default Adobe Premiere 4.2/Adobe Premiere Plug-
ins

Plug-in aliases Premiere does not resolve folders.

Plug-in load order Loads references and code on launch.

How to access the different plug-ins while using Adobe Premiere:

Filter modules Clip»Filters

!!

Index

Cross-Application Plug-in Development Resource Guide 77

Index
Numerics
68fp 16, 60
8BAM 15, 57
8BEM 15, 57
8BFM 15, 41, 57
8BIF 15, 57
8BIM 11, 39, 48, 50, 51, 76
8BSM 57
8BXM 15, 57
8BYM 15, 57

A
Accelerator extension 15, 57
Acquire 50
Acquire module 15
ADBE 39
Adobe Photoshop SDK 5
AEEffectMatchName 24
AEImageFormatExtensionInfo 29
AEPiPLVersion 24
aete 69
aFLT 20
After Effects Accelerator 15
After Effects Effect 15
After Effects Format 15
AI68KCodeProperty 42
AIExportList 43
AIImportList 43
AIKindProperty 41
AIPowerPCCodeProperty 42
AIVersionProperty 41
ALD6 47
ANIM 11
ANIM_FilterInfo 20
ANIM_ParamAtom 21
ANIM_PF_IS_RES_DEPENDENT 23
ANIM_PF_RESTRICT_BOUNDS 23
ANIM_PF_SPACE_IS_RELATIVE 23
ANIM_UI_ANGLE 22
ANIM_UI_COLOR_CMYK 23
ANIM_UI_COLOR_LAB 23
ANIM_UI_COLOR_RGB 23
ANIM_UI_NO_UI 22
ANIM_UI_POINT 22
ANIM_UI_RECT 23
ANIM_UI_SLIDER 22
aPAR 21
ARPI 15, 41, 57
ART5 37, 38

B
backward-compatibility 8
BINA 27, 67

C
cacheable 45
catg 15, 57
CNVTPIPL.EXE 54
copySourceToDestination 66
count 12, 55
cross-application plug-in development 5

Index

Cross-Application Plug-in Development Resource Guide 78

D
doesNotFilterLayerMasks 66
doesNotWorkWithBlankData 66
doNotCopySourceToDestination 66
doNotWriteOutsideSelection 66

E
eFKT 15
eFST 15
EnableInfo 57
enbl 57
expf 63
Export 50
Export module 15, 57
expt 43
extensionFlags 29

F
fat plug-ins 42
fContainerLength 16, 42, 61
fContainerOffset 16, 42, 61
fCount 43
fEntryName 16, 42, 61
fftE 27, 67
fftT 27, 67
fici 17, 20, 64
File 29
Filter 11, 38, 48, 50, 76
Filter module 15, 57
filterCaseEditableTransparencyNoSelection 17, 64
filterCaseEditableTransparencyWithSelection 17, 64
filterCaseFlatImageNoSelection 17, 64
filterCaseFlatImageWithSelection 17, 64
filterCaseFloatingSelection 17, 64
filterCaseProtectedTransparencyNoSelection 17, 64
filterCaseProtectedTransparencyWithSelection 17, 64
filterDataHandlingBackgroundZap 18
filterDataHandlingBlackMat 18
filterDataHandlingBlackZap 18
filterDataHandlingCantFilter 18
filterDataHandlingDefringe 18
filterDataHandlingFillMask 19
filterDataHandlingForegroundZap 19
filterDataHandlingGrayMat 18
filterDataHandlingGrayZap 18
filterDataHandlingNone 18
filterDataHandlingWhiteMat 18
filterDataHandlingWhiteZap 18
filtersLayerMasks 66
fImpExp 43
fLength 44
FltD 76
fmTC 27, 67
fmtf 28, 68
fName 44
Format 11, 38, 50
Format module 15, 57
Forward-compatibility 8
Framestore 29
fVersion 44
FXIF 15

Index

Cross-Application Plug-in Development Resource Guide 79

FXMF 29
FXTC 10

G
GAP SDK tech notes mailing list 6
generalInfoSize 53

H
HasTerminology 69
host 15, 57
hstm 69

I
Import module 57
import property list 43
impt 43
inBlackMat 65
inCantFilter 65
inGrayMat 65
Input 29
inStraightData 65
InteractGet 29
InteractPut 29
InteractPutRevert 29
inWhiteMat 65
ivrs 41

K
kAISelectorAcquireProperty 45
kAISelectorReleaseProperty 45
kind 15, 41, 57

M
m68k 16, 42, 60
majorVersion 29
matting cases 18, 65
mdos 27, 67
Microsoft OLE extension 48
minorVersion 29
mode 15, 57
mxch 28, 68
mxsz 28, 68

N
name 15, 57
NonSeqAddFrame 29
NoOutputDialog 29

O
outBlackMat 65
outCantFilter 65
outGrayMat 65
Output 29
outStraightData 65
outWhiteMat 65

P
Parser module 15, 57
PF_OutFlag_CUSTOM_NTRP 25

Index

Cross-Application Plug-in Development Resource Guide 80

PF_OutFlag_CUSTOM_UI 25
PF_OutFlag_DISPLAY_ERROR_MESSAGE 25
PF_OutFlag_I_AM_OBSOLETE 26
PF_OutFlag_I_DO_DIALOG 25
PF_OutFlag_I_EXPAND_BUFFER 25
PF_OutFlag_I_SHRINK_BUFFER 25
PF_OutFlag_I_USE_AUDIO 25
PF_OutFlag_I_USE_SHUTTER_ANGLE 25
PF_OutFlag_I_WRITE_INPUT_BUFFER 25
PF_OutFlag_KEEP_RESOURCE_OPEN 24
PF_OutFlag_NON_PARAM_VARY 24
PF_OutFlag_NOP_RENDER 25
PF_OutFlag_PIX_INDEPENDENT 25
PF_OutFlag_REFRESH_UI 25
PF_OutFlag_RESERVED1 26
PF_OutFlag_RESERVED2 26
PF_OutFlag_RESERVED3 26
PF_OutFlag_RESERVED4 26
PF_OutFlag_SEND_DO_DIALOG 25
PF_OutFlag_SEND_PARAMS_UPDATE 24
PF_OutFlag_SEQUENCE_DATA_NEEDS_FLATTENING 25
PF_OutFlag_SQUARE_PIX_ONLY 25
PF_OutFlag_USE_OUTPUT_EXTENT 25
PF_OutFlag_WIDE_TIME_INPUT 24
PF_OutFlag_WORKS_IN_PLACE 25
PF_Outflags 24
PF_PLUG_IN_VERSION 24
PF_Vers 24
PF_Version_BUGFIX 24
PF_Version_BUILD 24
PF_Version_STAGE 24
PF_Version_SUBVERS 24
PF_Version_VERS 24
PHUT 49
PI68KCodeProperty 16, 60
PI68KFPUCodeProperty 16, 60
PICategoryProperty 15, 57
PickerID 62
PIExpFlagsProperty 63
PIExpSupportsTransparency 63
PIFilterCaseInfoProperty 17, 64
PIFilterDontCopyToDestinationBit 19, 66
PIFilterFiltersLayerMaskBit 19, 66
PIFilterWorksWithBlankDataBit 19, 66
PIFilterWritesOutsideSelectionBit 66
PIFmtCanReadFlag 28, 68
PIFmtCanWriteFlag 28, 68
PIFmtCanWriteIfReadFlag 28, 68
PIFmtReadsAllTypesFlag 28, 68
PIFmtSavesImageResourcesFlag 28, 68
PIImageModesProperty 15, 57
PIKindProperty 15, 57
PiMI 52, 76
PiMI resources 52
PINameProperty 15, 57
PiPL 11, 12, 38, 39, 46, 48, 50, 54

PIExpFlagsProperty 17, 64
PIFilteredExtProperty 27, 67
PIFilteredTypesProperty 27, 67
PIFmtFileTypeProperty 27, 67
PIFmtFlagsProperty 28, 68
PIFmtMaxChannelsProperty 28, 68

Index

Cross-Application Plug-in Development Resource Guide 81

PIFmtMaxSizeProperty 28, 68
PIProperty structure 13, 56
PIReadExtProperty 27, 67
PIReadTypesProperty 27, 67
plug–in property list structure 12, 55

PiPL grammar 30, 70
PIPowerPCCodeProperty 16, 60
PIPriorityProperty 15, 57
PIPropertyList 12, 55
PIRequiredHostProperty 15, 57
PIVersionProperty 15, 57
PIWin32X86CodeProperty 60
plug–in hosts 7
Plug–in modules 7
plug–in modules 5
Plug-in Property List 39
Plug–in Property Lists 12, 54
PlugInInfo (PiMI) 52
pnme 62
priority 53
PrMr 75
properties 12, 55
property list 12, 54
property structures 12, 54
propertyData 13, 40, 56
propertyID 13, 40, 45, 56
propertyKey 13, 39, 45, 56
propertyLength 13, 40, 56
prty 15, 57
pwpc 16, 42, 60

R
RdEx 27, 67
RdTy 27, 67
requireHost 53
ResEdit 46
Resorcerer 46

S
Selection module 57
Still 29
subVersion 53
supportsMode 53

T
typeInfoSize 53

V
vendorID 13, 39, 45, 56
vers 15, 57
version 12, 53, 55
Video 29

W
worksWithBlankData 66
writeOutsideSelection 66
wx86 60

	Title Page
	Version History

	Table of Contents
	1. Introduction
	Audience
	How to use this guide
	Under construction
	About this guide

	2. Getting Started
	Plug–in modules and plug–in hosts
	Cross-development paradigm
	Version releases and compatibility issues
	Cross-application plug-in development strategies

	3. Adobe After Effects
	Adobe After Effects and Adobe Photoshop
	Host version support
	Creating dynamic resources

	4. Adobe After Effects PiPLs
	Property structures and property lists
	Creating PiPL resources
	Loading PiPL resources
	Plug–in property lists
	Plug–in properties
	Adobe After Effects properties in the Mac OS and W...
	Adobe After Effects Basic data types
	General properties
	Code descriptor properties
	Filter–specific properties
	FilterCaseInfo
	inputHandling & outputHandling
	flags2

	ANIM-specific properties
	'aFLT' property and ANIM_FilterInfo
	'aPAR' property and ANIM_ParamAtom

	Effect–specific properties
	PF_OutFlags

	Format–specific properties
	Input/output-specific properties
	AEImageFormatExtensionInfo

	Adobe After Effects PiPL syntax

	5. Adobe Illustrator
	Adobe Illustrator and Adobe Photoshop
	Host version support

	6. Adobe Illustrator PiPLs
	The Plug-in Propery List Resource
	PIPropertyList
	Properties

	Adobe Illustrator properties in the Mac OS and Win...
	Adobe Illustrator basic data types
	General properties
	Code Descriptor Properties
	Import and Export Properties
	Importing
	Exporting
	AIIEListDesc

	Dynamically Declared Properties
	Adobe Illustrator SDK information and samples
	Working with PiPLs
	Sample PiPLs

	7. Adobe PageMaker
	Adobe PageMaker and Adobe Photoshop
	Host version support
	Nomenclature
	Plug-in execution

	8. Adobe PhotoDeluxe
	Adobe PhotoDeluxe and Adobe Photoshop
	Host version support

	9. Adobe Photoshop
	Host emulators

	10. Adobe Photoshop PiMIs
	11. Adobe Photoshop PiPLs
	Property structures and property lists
	Creating PiPL resources
	Creating or modifying PiPL resources in Windows

	Loading PiPL resources
	Plug–in property lists
	Plug–in properties
	General properties
	EnableInfo
	Result of undefined values
	inFunction

	Code descriptor properties
	Color Picker–specific properties
	Export–specific properties
	Filter–specific properties
	FilterCaseInfo
	inputHandling & outputHandling
	flags2

	Format–specific properties
	Scripting–specific properties
	Ignoring AppleScript

	Adobe Photoshop PiPL Syntax

	12. Adobe Premiere
	Adobe Premiere and Adobe Photoshop
	Host version support
	Creating dynamic resources

	Index

